use of uk.ac.sussex.gdsc.smlm.function.ValueProcedure in project GDSC-SMLM by aherbert.
the class ErfGaussian2DFunctionTest method functionComputesGradientForEach.
@Test
void functionComputesGradientForEach() {
final ErfGaussian2DFunction f1 = (ErfGaussian2DFunction) this.f1;
final int n = f1.size();
final double[] du_da = new double[f1.getNumberOfGradients()];
final double[] du_db = new double[f1.getNumberOfGradients()];
final double[] d2u_da2 = new double[f1.getNumberOfGradients()];
final double[] values = new double[n];
final double[][] jacobian = new double[n][];
final double[][] jacobian2 = new double[n][];
for (final double background : testbackground) {
// Peak 1
for (final double signal1 : testsignal1) {
for (final double cx1 : testcx1) {
for (final double cy1 : testcy1) {
for (final double cz1 : testcz1) {
for (final double[] w1 : testw1) {
for (final double angle1 : testangle1) {
final double[] a = createParameters(background, signal1, cx1, cy1, cz1, w1[0], w1[1], angle1);
f1.initialiseExtended2(a);
// Compute single
for (int i = 0; i < n; i++) {
final double o1 = f1.eval(i, du_da);
final double o2 = f1.eval2(i, du_db, d2u_da2);
Assertions.assertEquals(o1, o2, 1e-10, "Value");
Assertions.assertArrayEquals(du_da, du_db, 1e-10, "Jacobian!=Jacobian");
values[i] = o1;
jacobian[i] = du_da.clone();
jacobian2[i] = d2u_da2.clone();
}
// Use procedures
f1.forEach(new ValueProcedure() {
int index = 0;
@Override
public void execute(double value) {
Assertions.assertEquals(values[index], value, 1e-10, "Value ValueProcedure");
index++;
}
});
f1.forEach(new Gradient1Procedure() {
int index = 0;
@Override
public void execute(double value, double[] dyDa) {
Assertions.assertEquals(values[index], value, 1e-10, "Value Gradient1Procedure");
Assertions.assertArrayEquals(jacobian[index], dyDa, 1e-10, "du_da Gradient1Procedure");
index++;
}
});
f1.forEach(new Gradient2Procedure() {
int index = 0;
@Override
public void execute(double value, double[] dyDa, double[] d2yDa2) {
Assertions.assertEquals(values[index], value, 1e-10, "Value Gradient2Procedure");
Assertions.assertArrayEquals(jacobian[index], dyDa, 1e-10, "du_da Gradient2Procedure");
Assertions.assertArrayEquals(jacobian2[index], d2yDa2, 1e-10, "d2u_da2 Gradient2Procedure");
index++;
}
});
f1.forEach(new ExtendedGradient2Procedure() {
int index = 0;
@Override
public void executeExtended(double value, double[] dyDa, double[] d2yDaDb) {
Assertions.assertEquals(values[index], value, 1e-10, "Value ExtendedGradient2Procedure");
Assertions.assertArrayEquals(jacobian[index], dyDa, 1e-10, "du_da ExtendedGradient2Procedure");
for (int j = 0, k = 0; j < d2u_da2.length; j++, k += d2u_da2.length + 1) {
d2u_da2[j] = d2yDaDb[k];
}
Assertions.assertArrayEquals(jacobian2[index], d2u_da2, 1e-10, "d2u_da2 Gradient2Procedure");
index++;
}
});
}
}
}
}
}
}
}
}
use of uk.ac.sussex.gdsc.smlm.function.ValueProcedure in project GDSC-SMLM by aherbert.
the class EjmlLinearSolverTest method runSolverSpeedTest.
private void runSolverSpeedTest(RandomSeed seed, int flags) {
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.MEDIUM));
final Gaussian2DFunction f0 = GaussianFunctionFactory.create2D(1, 10, 10, flags, null);
final int n = f0.size();
final double[] y = new double[n];
final LocalList<DenseMatrix64F> aList = new LocalList<>();
final LocalList<DenseMatrix64F> bList = new LocalList<>();
final double[] testbackground = new double[] { 0.2, 0.7 };
final double[] testsignal1 = new double[] { 30, 100, 300 };
final double[] testcx1 = new double[] { 4.9, 5.3 };
final double[] testcy1 = new double[] { 4.8, 5.2 };
final double[] testw1 = new double[] { 1.1, 1.2, 1.5 };
final int np = f0.getNumberOfGradients();
final GradientCalculator calc = GradientCalculatorUtils.newCalculator(np);
final UniformRandomProvider rng = RngUtils.create(seed.getSeed());
// double lambda = 10;
for (final double background : testbackground) {
// Peak 1
for (final double signal1 : testsignal1) {
for (final double cx1 : testcx1) {
for (final double cy1 : testcy1) {
for (final double w1 : testw1) {
final double[] p = new double[] { background, signal1, 0, cx1, cy1, w1, w1 };
f0.initialise(p);
f0.forEach(new ValueProcedure() {
int index = 0;
@Override
public void execute(double value) {
// Poisson data
y[index++] = GdscSmlmTestUtils.createPoissonSampler(rng, value).sample();
}
});
final double[][] alpha = new double[np][np];
final double[] beta = new double[np];
// double ss =
calc.findLinearised(n, y, p, alpha, beta, f0);
// TestLog.fine(logger,"SS = %f", ss);
// As per the LVM algorithm
// for (int i = 0; i < np; i++)
// alpha[i][i] *= lambda;
aList.add(EjmlLinearSolver.toA(alpha));
bList.add(EjmlLinearSolver.toB(beta));
}
}
}
}
}
final DenseMatrix64F[] a = aList.toArray(new DenseMatrix64F[0]);
final DenseMatrix64F[] b = bList.toArray(new DenseMatrix64F[0]);
final int runs = 100000 / a.length;
final TimingService ts = new TimingService(runs);
final LocalList<SolverTimingTask> tasks = new LocalList<>();
// Added in descending speed order
tasks.add(new PseudoInverseSolverTimingTask(a, b));
tasks.add(new LinearSolverTimingTask(a, b));
tasks.add(new CholeskySolverTimingTask(a, b));
tasks.add(new CholeskyLdltSolverTimingTask(a, b));
tasks.add(new DirectInversionSolverTimingTask(a, b));
for (final SolverTimingTask task : tasks) {
if (!task.badSolver) {
ts.execute(task);
}
}
final int size = ts.getSize();
ts.repeat();
if (logger.isLoggable(Level.INFO)) {
logger.info(ts.getReport(size));
}
// Just check the PseudoInverse is slowest
for (int i = 1; i < size; i++) {
logger.log(TestLogUtils.getTimingRecord(ts.get(-(size)), ts.get(-i)));
}
if (np > 2) {
// The Direct solver may not be faster at size=5
int i = (np == 5) ? 2 : 1;
final int size_1 = size - 1;
for (; i < size_1; i++) {
logger.log(TestLogUtils.getTimingRecord(ts.get(-(size_1)), ts.get(-i)));
}
}
}
use of uk.ac.sussex.gdsc.smlm.function.ValueProcedure in project GDSC-SMLM by aherbert.
the class EjmlLinearSolverTest method runInversionSpeedTest.
private void runInversionSpeedTest(RandomSeed seed, int flags) {
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.MEDIUM));
final Gaussian2DFunction f0 = GaussianFunctionFactory.create2D(1, 10, 10, flags, null);
final int n = f0.size();
final double[] y = new double[n];
final LocalList<DenseMatrix64F> aList = new LocalList<>();
final double[] testbackground = new double[] { 0.2, 0.7 };
final double[] testsignal1 = new double[] { 30, 100, 300 };
final double[] testcx1 = new double[] { 4.9, 5.3 };
final double[] testcy1 = new double[] { 4.8, 5.2 };
final double[] testw1 = new double[] { 1.1, 1.2, 1.5 };
final int np = f0.getNumberOfGradients();
final GradientCalculator calc = GradientCalculatorUtils.newCalculator(np);
final UniformRandomProvider rng = RngUtils.create(seed.getSeed());
// double lambda = 10;
for (final double background : testbackground) {
// Peak 1
for (final double signal1 : testsignal1) {
for (final double cx1 : testcx1) {
for (final double cy1 : testcy1) {
for (final double w1 : testw1) {
final double[] p = new double[] { background, signal1, 0, cx1, cy1, w1, w1 };
f0.initialise(p);
f0.forEach(new ValueProcedure() {
int index = 0;
@Override
public void execute(double value) {
// Poisson data
y[index++] = GdscSmlmTestUtils.createPoissonSampler(rng, value).sample();
}
});
final double[][] alpha = new double[np][np];
final double[] beta = new double[np];
// double ss =
calc.findLinearised(n, y, p, alpha, beta, f0);
// TestLog.fine(logger,"SS = %f", ss);
// As per the LVM algorithm
// for (int i = 0; i < np; i++)
// alpha[i][i] *= lambda;
aList.add(EjmlLinearSolver.toA(alpha));
}
}
}
}
}
final DenseMatrix64F[] a = aList.toArray(new DenseMatrix64F[0]);
final boolean[] ignore = new boolean[a.length];
final double[][] answer = new double[a.length][];
final int runs = 100000 / a.length;
final TimingService ts = new TimingService(runs);
final LocalList<InversionTimingTask> tasks = new LocalList<>();
// Added in descending speed order
tasks.add(new PseudoInverseInversionTimingTask(a, ignore, answer));
tasks.add(new LinearInversionTimingTask(a, ignore, answer));
tasks.add(new CholeskyLdltInversionTimingTask(a, ignore, answer));
tasks.add(new CholeskyInversionTimingTask(a, ignore, answer));
tasks.add(new DirectInversionInversionTimingTask(a, ignore, answer));
tasks.add(new DiagonalDirectInversionInversionTimingTask(a, ignore, answer));
for (final InversionTimingTask task : tasks) {
if (!task.badSolver) {
ts.execute(task);
}
}
final int size = ts.getSize();
ts.repeat();
if (logger.isLoggable(Level.INFO)) {
logger.info(ts.getReport(size));
}
// When it is present the DiagonalDirect is fastest (n<=5)
if (np <= 5) {
for (int i = 2; i <= size; i++) {
logger.log(TestLogUtils.getTimingRecord(ts.get(-i), ts.get(-1)));
}
if (np < 5) {
// n < 5 Direct is fastest
for (int i = 3; i <= size; i++) {
logger.log(TestLogUtils.getTimingRecord(ts.get(-i), ts.get(-2)));
}
} else {
// and may not be faster than Direct at n=5 so that comparison is ignored.
for (int i = 4; i <= size; i++) {
logger.log(TestLogUtils.getTimingRecord(ts.get(-i), ts.get(-3)));
}
}
} else {
// Cholesky should be fastest.
for (int i = 2; i <= size; i++) {
logger.log(TestLogUtils.getTimingRecord(ts.get(-i), ts.get(-1)));
}
}
}
Aggregations