use of android.util.Rational in project android_frameworks_base by crdroidandroid.
the class Utils method parseRationalRange.
static Range<Rational> parseRationalRange(Object o, Range<Rational> fallback) {
try {
String s = (String) o;
int ix = s.indexOf('-');
if (ix >= 0) {
return Range.create(Rational.parseRational(s.substring(0, ix)), Rational.parseRational(s.substring(ix + 1)));
}
Rational value = Rational.parseRational(s);
return Range.create(value, value);
} catch (ClassCastException e) {
} catch (NumberFormatException e) {
} catch (NullPointerException e) {
return fallback;
} catch (IllegalArgumentException e) {
}
Log.w(TAG, "could not parse rational range '" + o + "'");
return fallback;
}
use of android.util.Rational in project android_frameworks_base by crdroidandroid.
the class StaticMetadata method getAeCompensationStepChecked.
/**
* Get value of key android.control.aeCompensationStep and do the sanity check.
*
* @return default value if the value is null.
*/
public Rational getAeCompensationStepChecked() {
Key<Rational> key = CameraCharacteristics.CONTROL_AE_COMPENSATION_STEP;
Rational compensationStep = getValueFromKeyNonNull(key);
if (compensationStep == null) {
// Return default step.
return CONTROL_AE_COMPENSATION_STEP_DEFAULT;
}
// Legacy devices don't have a minimum step requirement
if (isHardwareLevelLimitedOrBetter()) {
float compensationStepF = (float) compensationStep.getNumerator() / compensationStep.getDenominator();
checkTrueForKey(key, " value must be no more than 1/2", compensationStepF <= 0.5f);
}
return compensationStep;
}
use of android.util.Rational in project android_frameworks_base by crdroidandroid.
the class RangeTest method testInRange.
@SmallTest
public void testInRange() {
Range<Integer> hundredOneTwo = Range.create(100, 200);
assertInRange(hundredOneTwo, 100);
assertInRange(hundredOneTwo, 200);
assertInRange(hundredOneTwo, 150);
assertOutOfRange(hundredOneTwo, 99);
assertOutOfRange(hundredOneTwo, 201);
assertOutOfRange(hundredOneTwo, 100000);
Range<Float> infinities = Range.create(Float.NEGATIVE_INFINITY, Float.POSITIVE_INFINITY);
assertInRange(infinities, Float.NEGATIVE_INFINITY);
assertInRange(infinities, Float.POSITIVE_INFINITY);
assertInRange(infinities, 0.0f);
assertOutOfRange(infinities, Float.NaN);
Range<Rational> negativeOneTenthPositiveOneTenth = new Range<Rational>(new Rational(-1, 10), new Rational(1, 10));
assertInRange(negativeOneTenthPositiveOneTenth, new Rational(-1, 10));
assertInRange(negativeOneTenthPositiveOneTenth, new Rational(1, 10));
assertInRange(negativeOneTenthPositiveOneTenth, Rational.ZERO);
assertOutOfRange(negativeOneTenthPositiveOneTenth, new Rational(-100, 1));
assertOutOfRange(negativeOneTenthPositiveOneTenth, new Rational(100, 1));
}
use of android.util.Rational in project android_frameworks_base by crdroidandroid.
the class RationalTest method testEquals.
@SmallTest
public void testEquals() {
Rational r = new Rational(1, 2);
assertEquals(1, r.getNumerator());
assertEquals(2, r.getDenominator());
assertEquals(r, r);
assertFalse(r.equals(null));
assertFalse(r.equals(new Object()));
Rational twoThirds = new Rational(2, 3);
assertFalse(r.equals(twoThirds));
assertFalse(twoThirds.equals(r));
Rational fourSixths = new Rational(4, 6);
assertEquals(twoThirds, fourSixths);
assertEquals(fourSixths, twoThirds);
Rational moreComplicated = new Rational(5 * 6 * 7 * 8 * 9, 1 * 2 * 3 * 4 * 5);
Rational moreComplicated2 = new Rational(5 * 6 * 7 * 8 * 9 * 78, 1 * 2 * 3 * 4 * 5 * 78);
assertEquals(moreComplicated, moreComplicated2);
assertEquals(moreComplicated2, moreComplicated);
// Ensure negatives are fine
twoThirds = new Rational(-2, 3);
fourSixths = new Rational(-4, 6);
assertEquals(twoThirds, fourSixths);
assertEquals(fourSixths, twoThirds);
moreComplicated = new Rational(-5 * 6 * 7 * 8 * 9, 1 * 2 * 3 * 4 * 5);
moreComplicated2 = new Rational(-5 * 6 * 7 * 8 * 9 * 78, 1 * 2 * 3 * 4 * 5 * 78);
assertEquals(moreComplicated, moreComplicated2);
assertEquals(moreComplicated2, moreComplicated);
// Zero is always equal to itself
Rational zero2 = new Rational(0, 100);
assertEquals(ZERO, zero2);
assertEquals(zero2, ZERO);
// NaN is always equal to itself
Rational nan = NaN;
Rational nan2 = new Rational(0, 0);
assertTrue(nan.equals(nan));
assertTrue(nan.equals(nan2));
assertTrue(nan2.equals(nan));
assertFalse(nan.equals(r));
assertFalse(r.equals(nan));
// Infinities of the same sign are equal.
Rational posInf = POSITIVE_INFINITY;
Rational posInf2 = new Rational(2, 0);
Rational negInf = NEGATIVE_INFINITY;
Rational negInf2 = new Rational(-2, 0);
assertEquals(posInf, posInf);
assertEquals(negInf, negInf);
assertEquals(posInf, posInf2);
assertEquals(negInf, negInf2);
// Infinities aren't equal to anything else.
assertFalse(posInf.equals(negInf));
assertFalse(negInf.equals(posInf));
assertFalse(negInf.equals(r));
assertFalse(posInf.equals(r));
assertFalse(r.equals(negInf));
assertFalse(r.equals(posInf));
assertFalse(posInf.equals(nan));
assertFalse(negInf.equals(nan));
assertFalse(nan.equals(posInf));
assertFalse(nan.equals(negInf));
}
use of android.util.Rational in project android_frameworks_base by crdroidandroid.
the class RationalTest method testCompareTo.
@SmallTest
public void testCompareTo() {
// unit is equal to itself
assertCompareEquals(UNIT, new Rational(1, 1));
// NaN is greater than anything but NaN
assertCompareEquals(NaN, new Rational(0, 0));
assertGreaterThan(NaN, UNIT);
assertGreaterThan(NaN, POSITIVE_INFINITY);
assertGreaterThan(NaN, NEGATIVE_INFINITY);
assertGreaterThan(NaN, ZERO);
// Positive infinity is greater than any other non-NaN
assertCompareEquals(POSITIVE_INFINITY, new Rational(1, 0));
assertGreaterThan(POSITIVE_INFINITY, UNIT);
assertGreaterThan(POSITIVE_INFINITY, NEGATIVE_INFINITY);
assertGreaterThan(POSITIVE_INFINITY, ZERO);
// Negative infinity is smaller than any other non-NaN
assertCompareEquals(NEGATIVE_INFINITY, new Rational(-1, 0));
assertLessThan(NEGATIVE_INFINITY, UNIT);
assertLessThan(NEGATIVE_INFINITY, POSITIVE_INFINITY);
assertLessThan(NEGATIVE_INFINITY, ZERO);
// A finite number with the same denominator is trivially comparable
assertGreaterThan(new Rational(3, 100), new Rational(1, 100));
assertGreaterThan(new Rational(3, 100), ZERO);
// Compare finite numbers with different divisors
assertGreaterThan(new Rational(5, 25), new Rational(1, 10));
assertGreaterThan(new Rational(5, 25), ZERO);
// Compare finite numbers with different signs
assertGreaterThan(new Rational(5, 25), new Rational(-1, 10));
assertLessThan(new Rational(-5, 25), ZERO);
}
Aggregations