use of boofcv.io.image.LookUpImageFilesByIndex in project BoofCV by lessthanoptimal.
the class ExampleMultiViewSparseReconstruction method visualizeSparseCloud.
/**
* To visualize the results we will render a sparse point cloud along with the location of each camera in the
* scene.
*/
public void visualizeSparseCloud() {
checkTrue(scene.isHomogenous());
List<Point3D_F64> cloudXyz = new ArrayList<>();
Point4D_F64 world = new Point4D_F64();
// NOTE: By default the colors found below are not used. Look before to see why and how to turn them on.
//
// Colorize the cloud by reprojecting the images. The math is straight forward but there's a lot of book
// keeping that needs to be done due to the scene data structure. A class is provided to make this process easy
var imageLookup = new LookUpImageFilesByIndex(imageFiles);
var colorize = new ColorizeMultiViewStereoResults<>(new LookUpColorRgbFormats.PL_U8(), imageLookup);
DogArray_I32 rgb = new DogArray_I32();
rgb.resize(scene.points.size);
colorize.processScenePoints(scene, // String encodes the image's index
(viewIdx) -> viewIdx + "", // Assign the RGB color
(pointIdx, r, g, b) -> rgb.set(pointIdx, (r << 16) | (g << 8) | b));
// Convert the structure into regular 3D points from homogenous
for (int i = 0; i < scene.points.size; i++) {
scene.points.get(i).get(world);
// array would be out of sync. Let's just throw it far far away then.
if (world.w == 0.0)
cloudXyz.add(new Point3D_F64(0, 0, Double.MAX_VALUE));
else
cloudXyz.add(new Point3D_F64(world.x / world.w, world.y / world.w, world.z / world.w));
}
PointCloudViewer viewer = VisualizeData.createPointCloudViewer();
viewer.setFog(true);
// We just did a bunch of work to look up the true color of points, however for sparse data it's easy to see
// the structure with psuedo color. Comment out the line below to see the true color.
viewer.setColorizer(new TwoAxisRgbPlane.Z_XY(1.0).fperiod(40));
viewer.setDotSize(1);
viewer.setTranslationStep(0.15);
viewer.addCloud((idx, p) -> p.setTo(cloudXyz.get(idx)), rgb::get, rgb.size);
viewer.setCameraHFov(UtilAngle.radian(60));
SwingUtilities.invokeLater(() -> {
// Show where the cameras are
BoofSwingUtil.visualizeCameras(scene, viewer);
// Size the window and show it to the user
viewer.getComponent().setPreferredSize(new Dimension(600, 600));
ShowImages.showWindow(viewer.getComponent(), "Refined Scene", true);
var copy = new DogArray<>(Point3dRgbI_F64::new);
viewer.copyCloud(copy);
try (var out = new FileOutputStream("saved_cloud.ply")) {
PointCloudIO.save3D(PointCloudIO.Format.PLY, PointCloudReader.wrapF64RGB(copy.toList()), true, out);
} catch (IOException e) {
e.printStackTrace();
}
});
}
use of boofcv.io.image.LookUpImageFilesByIndex in project BoofCV by lessthanoptimal.
the class ExampleMultiBaselineStereo method main.
public static void main(String[] args) {
// Compute a sparse reconstruction. This will give us intrinsic and extrinsic for all views
var example = new ExampleMultiViewSparseReconstruction();
// Specifies the "center" frame to use
int centerViewIdx = 15;
example.compute("tree_snow_01.mp4", true);
// example.compute("ditch_02.mp4", true);
// example.compute("holiday_display_01.mp4"", true);
// example.compute("log_building_02.mp4"", true);
// example.compute("drone_park_01.mp4", false);
// example.compute("stone_sign.mp4", true);
// We need a way to load images based on their ID. In this particular case the ID encodes the array index.
var imageLookup = new LookUpImageFilesByIndex(example.imageFiles);
// Next we tell it which view to use as the "center", which acts as the common view for all disparity images.
// The process of selecting the best views to use as centers is a problem all it's own. To keep things
// we just pick a frame.
SceneWorkingGraph.View center = example.working.getAllViews().get(centerViewIdx);
// The final scene refined by bundle adjustment is created by the Working graph. However the 3D relationship
// between views is contained in the pairwise graph. A View in the working graph has a reference to the view
// in the pairwise graph. Using that we will find all connected views that have a 3D relationship
var pairedViewIdxs = new DogArray_I32();
var sbaIndexToImageID = new TIntObjectHashMap<String>();
// This relationship between pairwise and working graphs might seem (and is) a bit convoluted. The Pairwise
// graph is the initial crude sketch of what might be connected. The working graph is an intermediate
// data structure for computing the metric scene. SBA is a refinement of the working graph.
// Iterate through all connected views in the pairwise graph and mark their indexes in the working graph
center.pview.connections.forEach((m) -> {
// if there isn't a 3D relationship just skip it
if (!m.is3D)
return;
String connectedID = m.other(center.pview).id;
SceneWorkingGraph.View connected = example.working.views.get(connectedID);
// Make sure the pairwise view exists in the working graph too
if (connected == null)
return;
// Add this view to the index to name/ID lookup table
sbaIndexToImageID.put(connected.index, connectedID);
// Note that this view is one which acts as the second image in the stereo pair
pairedViewIdxs.add(connected.index);
});
// Add the center camera image to the ID look up table
sbaIndexToImageID.put(centerViewIdx, center.pview.id);
// Configure there stereo disparity algorithm which is used
var configDisparity = new ConfigDisparityBMBest5();
configDisparity.validateRtoL = 1;
configDisparity.texture = 0.5;
configDisparity.regionRadiusX = configDisparity.regionRadiusY = 4;
configDisparity.disparityRange = 120;
// This is the actual MBS algorithm mentioned previously. It selects the best disparity for each pixel
// in the original image using a median filter.
var multiBaseline = new MultiBaselineStereoIndependent<>(imageLookup, ImageType.SB_U8);
multiBaseline.setStereoDisparity(FactoryStereoDisparity.blockMatchBest5(configDisparity, GrayU8.class, GrayF32.class));
// Print out verbose debugging and profile information
multiBaseline.setVerbose(System.out, null);
multiBaseline.setVerboseProfiling(System.out);
// Improve stereo by removing small regions, which tends to be noise. Consider adjusting the region size.
multiBaseline.setDisparitySmoother(FactoryStereoDisparity.removeSpeckle(null, GrayF32.class));
// Print out debugging information from the smoother
// Objects.requireNonNull(multiBaseline.getDisparitySmoother()).setVerbose(System.out,null);
// Creates a list where you can switch between different images/visualizations
var listDisplay = new ListDisplayPanel();
listDisplay.setPreferredSize(new Dimension(1000, 300));
ShowImages.showWindow(listDisplay, "Intermediate Results", true);
// We will display intermediate results as they come in
multiBaseline.setListener((leftView, rightView, rectLeft, rectRight, disparity, mask, parameters, rect) -> {
// Visualize the rectified stereo pair. You can interact with this window and verify
// that the y-axis is aligned
var rectified = new RectifiedPairPanel(true);
rectified.setImages(ConvertBufferedImage.convertTo(rectLeft, null), ConvertBufferedImage.convertTo(rectRight, null));
// Cleans up the disparity image by zeroing out pixels that are outside the original image bounds
RectifyImageOps.applyMask(disparity, mask, 0);
// Display the colorized disparity
BufferedImage colorized = VisualizeImageData.disparity(disparity, null, parameters.disparityRange, 0);
SwingUtilities.invokeLater(() -> {
listDisplay.addItem(rectified, "Rectified " + leftView + " " + rightView);
listDisplay.addImage(colorized, leftView + " " + rightView);
});
});
// Process the images and compute a single combined disparity image
if (!multiBaseline.process(example.scene, center.index, pairedViewIdxs, sbaIndexToImageID::get)) {
throw new RuntimeException("Failed to fuse stereo views");
}
// Extract the point cloud from the fused disparity image
GrayF32 fusedDisparity = multiBaseline.getFusedDisparity();
DisparityParameters fusedParam = multiBaseline.getFusedParam();
BufferedImage colorizedDisp = VisualizeImageData.disparity(fusedDisparity, null, fusedParam.disparityRange, 0);
ShowImages.showWindow(colorizedDisp, "Fused Disparity");
// Now compute the point cloud it represents and the color of each pixel.
// For the fused image, instead of being in rectified image coordinates it's in the original image coordinates
// this makes extracting color much easier.
var cloud = new DogArray<>(Point3D_F64::new);
var cloudRgb = new DogArray_I32(cloud.size);
// Load the center image in color
var colorImage = new InterleavedU8(1, 1, 3);
imageLookup.loadImage(center.pview.id, colorImage);
// Since the fused image is in the original (i.e. distorted) pixel coordinates and is not rectified,
// that needs to be taken in account by undistorting the image to create the point cloud.
CameraPinholeBrown intrinsic = BundleAdjustmentOps.convert(example.scene.cameras.get(center.cameraIdx).model, colorImage.width, colorImage.height, null);
Point2Transform2_F64 pixel_to_norm = new LensDistortionBrown(intrinsic).distort_F64(true, false);
MultiViewStereoOps.disparityToCloud(fusedDisparity, fusedParam, new PointToPixelTransform_F64(pixel_to_norm), (pixX, pixY, x, y, z) -> {
cloud.grow().setTo(x, y, z);
cloudRgb.add(colorImage.get24(pixX, pixY));
});
// Configure the point cloud viewer
PointCloudViewer pcv = VisualizeData.createPointCloudViewer();
pcv.setCameraHFov(UtilAngle.radian(70));
pcv.setTranslationStep(0.15);
pcv.addCloud(cloud.toList(), cloudRgb.data);
// pcv.setColorizer(new SingleAxisRgb.Z().fperiod(30.0));
JComponent viewer = pcv.getComponent();
viewer.setPreferredSize(new Dimension(600, 600));
ShowImages.showWindow(viewer, "Point Cloud", true);
System.out.println("Done");
}
use of boofcv.io.image.LookUpImageFilesByIndex in project BoofCV by lessthanoptimal.
the class ExampleMultiViewDenseReconstruction method main.
public static void main(String[] args) {
var example = new ExampleMultiViewSparseReconstruction();
example.compute("tree_snow_01.mp4", true);
// example.compute("ditch_02.mp4", true);
// example.compute("holiday_display_01.mp4", true);
// example.compute("log_building_02.mp4", true);
// example.compute("drone_park_01.mp4", false);
// example.compute("stone_sign.mp4", true);
// Looks up images based on their index in the file list
var imageLookup = new LookUpImageFilesByIndex(example.imageFiles);
// We will use a high level algorithm that does almost all the work for us. It is highly configurable
// and just about every parameter can be tweaked using its Config. Internal algorithms can be accessed
// and customize directly if needed. Specifics for how it work is beyond this example but the code
// is easily accessible.
// Let's do some custom configuration for this scenario
var config = new ConfigSparseToDenseCloud();
config.disparity.approach = ConfigDisparity.Approach.SGM;
ConfigDisparitySGM configSgm = config.disparity.approachSGM;
configSgm.validateRtoL = 0;
configSgm.texture = 0.75;
configSgm.disparityRange = 250;
configSgm.paths = ConfigDisparitySGM.Paths.P4;
configSgm.configBlockMatch.radiusX = 3;
configSgm.configBlockMatch.radiusY = 3;
// Create the sparse to dense reconstruction using a factory
SparseSceneToDenseCloud<GrayU8> sparseToDense = FactorySceneReconstruction.sparseSceneToDenseCloud(config, ImageType.SB_U8);
// To help make the time go by faster while we wait about 1 to 2 minutes for it to finish, let's print stuff
sparseToDense.getMultiViewStereo().setVerbose(System.out, BoofMiscOps.hashSet(BoofVerbose.RECURSIVE, BoofVerbose.RUNTIME));
// To visualize intermediate results we will add a listener. This will show fused disparity images
sparseToDense.getMultiViewStereo().setListener(new MultiViewStereoFromKnownSceneStructure.Listener<>() {
@Override
public void handlePairDisparity(String left, String right, GrayU8 rect0, GrayU8 rect1, GrayF32 disparity, GrayU8 mask, DisparityParameters parameters) {
// Uncomment to display individual stereo pairs. Commented out by default because it generates
// a LOT of windows
// BufferedImage outLeft = ConvertBufferedImage.convertTo(rect0, null);
// BufferedImage outRight = ConvertBufferedImage.convertTo(rect1, null);
//
// ShowImages.showWindow(new RectifiedPairPanel(true, outLeft, outRight), "Rectification: "+left+" "+right);
// BufferedImage colorized = VisualizeImageData.disparity(disparity, null, parameters.disparityRange, 0);
// ShowImages.showWindow(colorized, "Disparity " + left + " " + right);
}
@Override
public void handleFusedDisparity(String name, GrayF32 disparity, GrayU8 mask, DisparityParameters parameters) {
// You can also do custom filtering of the disparity image in this function. If the line below is
// uncommented then points which are far away will be marked as invalid
// PixelMath.operator1(disparity, ( v ) -> v >= 20 ? v : parameters.disparityRange, disparity);
// Display the disparity for each center view
BufferedImage colorized = VisualizeImageData.disparity(disparity, null, parameters.disparityRange, 0);
ShowImages.showWindow(colorized, "Center " + name);
}
});
// It needs a look up table to go from SBA view index to image name. It loads images as needed to perform
// stereo disparity
var viewToId = new TIntObjectHashMap<String>();
BoofMiscOps.forIdx(example.working.listViews, (workIdxI, wv) -> viewToId.put(wv.index, wv.pview.id));
if (!sparseToDense.process(example.scene, viewToId, imageLookup))
throw new RuntimeException("Dense reconstruction failed!");
saveCloudToDisk(sparseToDense);
// Display the dense cloud
visualizeInPointCloud(sparseToDense.getCloud(), sparseToDense.getColorRgb(), example.scene);
}
Aggregations