use of boofcv.struct.calib.StereoParameters in project BoofCV by lessthanoptimal.
the class ExampleStereoDisparity3D method main.
public static void main(String[] args) {
// ------------- Compute Stereo Correspondence
// Load camera images and stereo camera parameters
String calibDir = UtilIO.pathExample("calibration/stereo/Bumblebee2_Chess/");
String imageDir = UtilIO.pathExample("stereo/");
StereoParameters param = CalibrationIO.load(new File(calibDir, "stereo.yaml"));
// load and convert images into a BoofCV format
BufferedImage origLeft = UtilImageIO.loadImage(imageDir, "chair01_left.jpg");
BufferedImage origRight = UtilImageIO.loadImage(imageDir, "chair01_right.jpg");
GrayU8 distLeft = ConvertBufferedImage.convertFrom(origLeft, (GrayU8) null);
GrayU8 distRight = ConvertBufferedImage.convertFrom(origRight, (GrayU8) null);
// re-scale input images
GrayU8 scaledLeft = new GrayU8((int) (distLeft.width * scale), (int) (distLeft.height * scale));
GrayU8 scaledRight = new GrayU8((int) (distRight.width * scale), (int) (distRight.height * scale));
new FDistort(distLeft, scaledLeft).scaleExt().apply();
new FDistort(distRight, scaledRight).scaleExt().apply();
// Don't forget to adjust camera parameters for the change in scale!
PerspectiveOps.scaleIntrinsic(param.left, scale);
PerspectiveOps.scaleIntrinsic(param.right, scale);
// rectify images and compute disparity
GrayU8 rectLeft = new GrayU8(scaledLeft.width, scaledLeft.height);
GrayU8 rectRight = new GrayU8(scaledRight.width, scaledRight.height);
RectifyCalibrated rectAlg = ExampleStereoDisparity.rectify(scaledLeft, scaledRight, param, rectLeft, rectRight);
// GrayU8 disparity = ExampleStereoDisparity.denseDisparity(rectLeft, rectRight, 3,minDisparity, maxDisparity);
GrayF32 disparity = ExampleStereoDisparity.denseDisparitySubpixel(rectLeft, rectRight, 3, minDisparity, maxDisparity);
// ------------- Convert disparity image into a 3D point cloud
// The point cloud will be in the left cameras reference frame
DMatrixRMaj rectK = rectAlg.getCalibrationMatrix();
DMatrixRMaj rectR = rectAlg.getRectifiedRotation();
// used to display the point cloud
PointCloudViewer viewer = new PointCloudViewer(rectK, 10);
viewer.setPreferredSize(new Dimension(rectLeft.width, rectLeft.height));
// extract intrinsic parameters from rectified camera
double baseline = param.getBaseline();
double fx = rectK.get(0, 0);
double fy = rectK.get(1, 1);
double cx = rectK.get(0, 2);
double cy = rectK.get(1, 2);
// Iterate through each pixel in disparity image and compute its 3D coordinate
Point3D_F64 pointRect = new Point3D_F64();
Point3D_F64 pointLeft = new Point3D_F64();
for (int y = 0; y < disparity.height; y++) {
for (int x = 0; x < disparity.width; x++) {
double d = disparity.unsafe_get(x, y) + minDisparity;
// skip over pixels were no correspondence was found
if (d >= rangeDisparity)
continue;
// Coordinate in rectified camera frame
pointRect.z = baseline * fx / d;
pointRect.x = pointRect.z * (x - cx) / fx;
pointRect.y = pointRect.z * (y - cy) / fy;
// rotate into the original left camera frame
GeometryMath_F64.multTran(rectR, pointRect, pointLeft);
// add pixel to the view for display purposes and sets its gray scale value
int v = rectLeft.unsafe_get(x, y);
viewer.addPoint(pointLeft.x, pointLeft.y, pointLeft.z, v << 16 | v << 8 | v);
}
}
// display the results. Click and drag to change point cloud camera
BufferedImage visualized = VisualizeImageData.disparity(disparity, null, minDisparity, maxDisparity, 0);
ShowImages.showWindow(visualized, "Disparity");
ShowImages.showWindow(viewer, "Point Cloud");
}
use of boofcv.struct.calib.StereoParameters in project BoofCV by lessthanoptimal.
the class ExampleOverheadView method main.
public static void main(String[] args) {
BufferedImage input = UtilImageIO.loadImage(UtilIO.pathExample("road/left01.png"));
Planar<GrayU8> imageRGB = ConvertBufferedImage.convertFromPlanar(input, null, true, GrayU8.class);
StereoParameters stereoParam = CalibrationIO.load(UtilIO.pathExample("road/stereo01.yaml"));
Se3_F64 groundToLeft = CalibrationIO.load(UtilIO.pathExample("road/ground_to_left_01.yaml"));
CreateSyntheticOverheadView<Planar<GrayU8>> generateOverhead = new CreateSyntheticOverheadViewPL<>(InterpolationType.BILINEAR, 3, GrayU8.class);
// size of cells in the overhead image in world units
double cellSize = 0.05;
// You can use this to automatically select reasonable values for the overhead image
SelectOverheadParameters selectMapSize = new SelectOverheadParameters(cellSize, 20, 0.5);
selectMapSize.process(stereoParam.left, groundToLeft);
int overheadWidth = selectMapSize.getOverheadWidth();
int overheadHeight = selectMapSize.getOverheadHeight();
Planar<GrayU8> overheadRGB = new Planar<>(GrayU8.class, overheadWidth, overheadHeight, 3);
generateOverhead.configure(stereoParam.left, groundToLeft, selectMapSize.getCenterX(), selectMapSize.getCenterY(), cellSize, overheadRGB.width, overheadRGB.height);
generateOverhead.process(imageRGB, overheadRGB);
// note that the left/right values are swapped in the overhead image. This is an artifact of the plane's
// 2D coordinate system having +y pointing up, while images have +y pointing down.
BufferedImage output = ConvertBufferedImage.convertTo(overheadRGB, null, true);
ShowImages.showWindow(input, "Input Image", true);
ShowImages.showWindow(output, "Overhead Image", true);
}
use of boofcv.struct.calib.StereoParameters in project BoofCV by lessthanoptimal.
the class ExampleCalibrateStereo method process.
/**
* Process calibration images, compute intrinsic parameters, save to a file
*/
public void process() {
// Declare and setup the calibration algorithm
CalibrateStereoPlanar calibratorAlg = new CalibrateStereoPlanar(detector.getLayout());
calibratorAlg.configure(true, 2, false);
// ensure the lists are in the same order
Collections.sort(left);
Collections.sort(right);
for (int i = 0; i < left.size(); i++) {
BufferedImage l = UtilImageIO.loadImage(left.get(i));
BufferedImage r = UtilImageIO.loadImage(right.get(i));
GrayF32 imageLeft = ConvertBufferedImage.convertFrom(l, (GrayF32) null);
GrayF32 imageRight = ConvertBufferedImage.convertFrom(r, (GrayF32) null);
CalibrationObservation calibLeft, calibRight;
if (!detector.process(imageLeft)) {
System.out.println("Failed to detect target in " + left.get(i));
continue;
}
calibLeft = detector.getDetectedPoints();
if (!detector.process(imageRight)) {
System.out.println("Failed to detect target in " + right.get(i));
continue;
}
calibRight = detector.getDetectedPoints();
calibratorAlg.addPair(calibLeft, calibRight);
}
// Process and compute calibration parameters
StereoParameters stereoCalib = calibratorAlg.process();
// print out information on its accuracy and errors
calibratorAlg.printStatistics();
// save results to a file and print out
CalibrationIO.save(stereoCalib, "stereo.yaml");
stereoCalib.print();
// Note that the stereo baseline translation will be specified in the same units as the calibration grid.
// Which is in millimeters (mm) in this example.
}
use of boofcv.struct.calib.StereoParameters in project BoofCV by lessthanoptimal.
the class TestAssociateStereo2D method setup.
@Before
public void setup() {
leftToRight = new Se3_F64();
ConvertRotation3D_F64.eulerToMatrix(EulerType.XYZ, 0.01, -0.001, 0.005, leftToRight.getR());
leftToRight.getT().set(-0.1, 0, 0);
param = new StereoParameters();
param.rightToLeft = leftToRight.invert(null);
param.left = new CameraPinholeRadial(400, 500, 0.1, 160, 120, 320, 240).fsetRadial(0, 0);
param.right = new CameraPinholeRadial(380, 505, 0.05, 165, 115, 320, 240).fsetRadial(0, 0);
descLeft = new FastQueue<TupleDesc_F64>(TupleDesc_F64.class, true) {
@Override
protected TupleDesc_F64 createInstance() {
return new TupleDesc_F64(10);
}
};
descRight = new FastQueue<TupleDesc_F64>(TupleDesc_F64.class, true) {
@Override
protected TupleDesc_F64 createInstance() {
return new TupleDesc_F64(10);
}
};
pointsLeft.reset();
pointsRight.reset();
}
use of boofcv.struct.calib.StereoParameters in project BoofCV by lessthanoptimal.
the class TestStereoConsistencyCheck method checkRectification.
@Test
public void checkRectification() {
Se3_F64 leftToRight = new Se3_F64();
ConvertRotation3D_F64.eulerToMatrix(EulerType.XYZ, 0.01, -0.001, 0.005, leftToRight.getR());
leftToRight.getT().set(-0.1, 0, 0);
StereoParameters param = new StereoParameters();
param.rightToLeft = leftToRight.invert(null);
param.left = new CameraPinholeRadial(400, 500, 0.1, 160, 120, 320, 240).fsetRadial(0, 0);
param.right = new CameraPinholeRadial(380, 505, 0.05, 165, 115, 320, 240).fsetRadial(0, 0);
Point3D_F64 X = new Point3D_F64(0.02, -0.5, 3);
Point2D_F64 leftP = new Point2D_F64();
Point2D_F64 rightP = new Point2D_F64();
SfmTestHelper.renderPointPixel(param, X, leftP, rightP);
StereoConsistencyCheck alg = new StereoConsistencyCheck(1, 2);
alg.setCalibration(param);
alg.checkPixel(leftP, rightP);
assertEquals(alg.rectLeft.y, alg.rectRight.y, 1e-5);
assertTrue(alg.rectLeft.x > alg.rectRight.x);
}
Aggregations