use of cern.colt.function.IntComparator in project tdq-studio-se by Talend.
the class Partitioning method partition.
/**
*Same as {@link cern.colt.Partitioning#partition(int[],int,int,int[],int,int,int[])}
*except that it <i>synchronously</i> partitions the rows of the given matrix by the values of the given matrix column;
*This is essentially the same as partitioning a list of composite objects by some instance variable;
*In other words, two entire rows of the matrix are swapped, whenever two column values indicate so.
*<p>
*Let's say, a "row" is an "object" (tuple, d-dimensional point).
*A "column" is the list of "object" values of a given variable (field, dimension).
*A "matrix" is a list of "objects" (tuples, points).
*<p>
*Now, rows (objects, tuples) are partially sorted according to their values in one given variable (dimension).
*Two entire rows of the matrix are swapped, whenever two column values indicate so.
*<p>
*Note that arguments are not checked for validity.
*<p>
*<b>Example:</b>
*<table border="1" cellspacing="0">
* <tr nowrap>
* <td valign="top"><tt>8 x 3 matrix:<br>
* 23, 22, 21<br>
* 20, 19, 18<br>
* 17, 16, 15<br>
* 14, 13, 12<br>
* 11, 10, 9<br>
* 8, 7, 6<br>
* 5, 4, 3<br>
* 2, 1, 0 </tt></td>
* <td align="left" valign="top">
* <p><tt>column = 0;<br>
* rowIndexes = {0,1,2,..,matrix.rows()-1};
* rowFrom = 0;<br>
* rowTo = matrix.rows()-1;<br>
* splitters = {5,10,12}<br>
* c = 0; <br>
* d = splitters.length-1;<br>
* partition(matrix,rowIndexes,rowFrom,rowTo,column,splitters,c,d,splitIndexes);<br>
* ==><br>
* splitIndexes == {0, 2, 3}<br>
* rowIndexes == {7, 6, 5, 4, 0, 1, 2, 3}</tt></p>
* </td>
* <td valign="top">
* The matrix IS NOT REORDERED.<br>
* Here is how it would look<br>
* like, if it would be reordered<br>
* accoring to <tt>rowIndexes</tt>.<br>
* <tt>8 x 3 matrix:<br>
* 2, 1, 0<br>
* 5, 4, 3<br>
* 8, 7, 6<br>
* 11, 10, 9<br>
* 23, 22, 21<br>
* 20, 19, 18<br>
* 17, 16, 15<br>
* 14, 13, 12 </tt></td>
* </tr>
*</table>
*@param matrix the matrix to be partitioned.
*@param rowIndexes the index of the i-th row; is modified by this method to reflect partitioned indexes.
*@param rowFrom the index of the first row (inclusive).
*@param rowTo the index of the last row (inclusive).
*@param column the index of the column to partition on.
*@param splitters the values at which the rows shall be split into intervals.
* Must be sorted ascending and must not contain multiple identical values.
* These preconditions are not checked; be sure that they are met.
*
*@param splitFrom the index of the first splitter element to be considered.
*@param splitTo the index of the last splitter element to be considered.
* The method considers the splitter elements <tt>splitters[splitFrom] .. splitters[splitTo]</tt>.
*
*@param splitIndexes a list into which this method fills the indexes of rows delimiting intervals.
*Upon return <tt>splitIndexes[splitFrom..splitTo]</tt> will be set accordingly.
*Therefore, must satisfy <tt>splitIndexes.length >= splitters.length</tt>.
*/
public static void partition(DoubleMatrix2D matrix, int[] rowIndexes, int rowFrom, int rowTo, int column, final double[] splitters, int splitFrom, int splitTo, int[] splitIndexes) {
if (rowFrom < 0 || rowTo >= matrix.rows() || rowTo >= rowIndexes.length)
throw new IllegalArgumentException();
if (column < 0 || column >= matrix.columns())
throw new IllegalArgumentException();
if (splitFrom < 0 || splitTo >= splitters.length)
throw new IllegalArgumentException();
if (splitIndexes.length < splitters.length)
throw new IllegalArgumentException();
// this one knows how to swap two row indexes (a,b)
final int[] g = rowIndexes;
Swapper swapper = new Swapper() {
public void swap(int b, int c) {
int tmp = g[b];
g[b] = g[c];
g[c] = tmp;
}
};
// compare splitter[a] with columnView[rowIndexes[b]]
final DoubleMatrix1D columnView = matrix.viewColumn(column);
IntComparator comp = new IntComparator() {
public int compare(int a, int b) {
double av = splitters[a];
double bv = columnView.getQuick(g[b]);
return av < bv ? -1 : (av == bv ? 0 : 1);
}
};
// compare columnView[rowIndexes[a]] with columnView[rowIndexes[b]]
IntComparator comp2 = new IntComparator() {
public int compare(int a, int b) {
double av = columnView.getQuick(g[a]);
double bv = columnView.getQuick(g[b]);
return av < bv ? -1 : (av == bv ? 0 : 1);
}
};
// compare splitter[a] with splitter[b]
IntComparator comp3 = new IntComparator() {
public int compare(int a, int b) {
double av = splitters[a];
double bv = splitters[b];
return av < bv ? -1 : (av == bv ? 0 : 1);
}
};
// generic partitioning does the main work of reordering row indexes
cern.colt.Partitioning.genericPartition(rowFrom, rowTo, splitFrom, splitTo, splitIndexes, comp, comp2, comp3, swapper);
}
use of cern.colt.function.IntComparator in project tdq-studio-se by Talend.
the class Sorting method sort.
/**
*Sorts the matrix slices into ascending order, according to the <i>natural ordering</i> of the matrix values in the given <tt>[row,column]</tt> position.
*The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa.
*To sort ranges use sub-ranging views. To sort by other dimensions, use dice views. To sort descending, use flip views ...
*<p>
*The algorithm compares two 2-d slices at a time, determinining whether one is smaller, equal or larger than the other.
*Comparison is based on the cell <tt>[row,column]</tt> within a slice.
*Let <tt>A</tt> and <tt>B</tt> be two 2-d slices. Then we have the following rules
*<ul>
*<li><tt>A < B iff A.get(row,column) < B.get(row,column)</tt>
*<li><tt>A == B iff A.get(row,column) == B.get(row,column)</tt>
*<li><tt>A > B iff A.get(row,column) > B.get(row,column)</tt>
*</ul>
*
*@param matrix the matrix to be sorted.
*@param row the index of the row inducing the order.
*@param column the index of the column inducing the order.
*@return a new matrix view having slices sorted by the values of the slice view <tt>matrix.viewRow(row).viewColumn(column)</tt>.
* <b>Note that the original matrix is left unaffected.</b>
*@throws IndexOutOfBoundsException if <tt>row < 0 || row >= matrix.rows() || column < 0 || column >= matrix.columns()</tt>.
*/
public DoubleMatrix3D sort(DoubleMatrix3D matrix, int row, int column) {
if (row < 0 || row >= matrix.rows())
throw new IndexOutOfBoundsException("row=" + row + ", matrix=" + Formatter.shape(matrix));
if (column < 0 || column >= matrix.columns())
throw new IndexOutOfBoundsException("column=" + column + ", matrix=" + Formatter.shape(matrix));
// indexes to reorder instead of matrix itself
int[] sliceIndexes = new int[matrix.slices()];
for (int i = sliceIndexes.length; --i >= 0; ) sliceIndexes[i] = i;
final DoubleMatrix1D sliceView = matrix.viewRow(row).viewColumn(column);
IntComparator comp = new IntComparator() {
public int compare(int a, int b) {
double av = sliceView.getQuick(a);
double bv = sliceView.getQuick(b);
// swap NaNs to the end
if (av != av || bv != bv)
return compareNaN(av, bv);
return av < bv ? -1 : (av == bv ? 0 : 1);
}
};
runSort(sliceIndexes, 0, sliceIndexes.length, comp);
// take all rows and columns in the original order
return matrix.viewSelection(sliceIndexes, null, null);
}
use of cern.colt.function.IntComparator in project tdq-studio-se by Talend.
the class Partitioning method partition.
/**
*Same as {@link cern.colt.Partitioning#partition(int[],int,int,int[],int,int,int[])}
*except that it <i>synchronously</i> partitions the rows of the given matrix by the values of the given matrix column;
*This is essentially the same as partitioning a list of composite objects by some instance variable;
*In other words, two entire rows of the matrix are swapped, whenever two column values indicate so.
*<p>
*Let's say, a "row" is an "object" (tuple, d-dimensional point).
*A "column" is the list of "object" values of a given variable (field, dimension).
*A "matrix" is a list of "objects" (tuples, points).
*<p>
*Now, rows (objects, tuples) are partially sorted according to their values in one given variable (dimension).
*Two entire rows of the matrix are swapped, whenever two column values indicate so.
*<p>
*Note that arguments are not checked for validity.
*<p>
*<b>Example:</b>
*<table border="1" cellspacing="0">
* <tr nowrap>
* <td valign="top"><tt>8 x 3 matrix:<br>
* 23, 22, 21<br>
* 20, 19, 18<br>
* 17, 16, 15<br>
* 14, 13, 12<br>
* 11, 10, 9<br>
* 8, 7, 6<br>
* 5, 4, 3<br>
* 2, 1, 0 </tt></td>
* <td align="left" valign="top">
* <p><tt>column = 0;<br>
* rowIndexes = {0,1,2,..,matrix.rows()-1};
* rowFrom = 0;<br>
* rowTo = matrix.rows()-1;<br>
* splitters = {5,10,12}<br>
* c = 0; <br>
* d = splitters.length-1;<br>
* partition(matrix,rowIndexes,rowFrom,rowTo,column,splitters,c,d,splitIndexes);<br>
* ==><br>
* splitIndexes == {0, 2, 3}<br>
* rowIndexes == {7, 6, 5, 4, 0, 1, 2, 3}</tt></p>
* </td>
* <td valign="top">
* The matrix IS NOT REORDERED.<br>
* Here is how it would look<br>
* like, if it would be reordered<br>
* accoring to <tt>rowIndexes</tt>.<br>
* <tt>8 x 3 matrix:<br>
* 2, 1, 0<br>
* 5, 4, 3<br>
* 8, 7, 6<br>
* 11, 10, 9<br>
* 23, 22, 21<br>
* 20, 19, 18<br>
* 17, 16, 15<br>
* 14, 13, 12 </tt></td>
* </tr>
*</table>
*@param matrix the matrix to be partitioned.
*@param rowIndexes the index of the i-th row; is modified by this method to reflect partitioned indexes.
*@param rowFrom the index of the first row (inclusive).
*@param rowTo the index of the last row (inclusive).
*@param column the index of the column to partition on.
*@param splitters the values at which the rows shall be split into intervals.
* Must be sorted ascending and must not contain multiple identical values.
* These preconditions are not checked; be sure that they are met.
*
*@param splitFrom the index of the first splitter element to be considered.
*@param splitTo the index of the last splitter element to be considered.
* The method considers the splitter elements <tt>splitters[splitFrom] .. splitters[splitTo]</tt>.
*
*@param splitIndexes a list into which this method fills the indexes of rows delimiting intervals.
*Upon return <tt>splitIndexes[splitFrom..splitTo]</tt> will be set accordingly.
*Therefore, must satisfy <tt>splitIndexes.length >= splitters.length</tt>.
*/
public static void partition(ObjectMatrix2D matrix, int[] rowIndexes, int rowFrom, int rowTo, int column, final Object[] splitters, int splitFrom, int splitTo, int[] splitIndexes) {
if (rowFrom < 0 || rowTo >= matrix.rows() || rowTo >= rowIndexes.length)
throw new IllegalArgumentException();
if (column < 0 || column >= matrix.columns())
throw new IllegalArgumentException();
if (splitFrom < 0 || splitTo >= splitters.length)
throw new IllegalArgumentException();
if (splitIndexes.length < splitters.length)
throw new IllegalArgumentException();
// this one knows how to swap two row indexes (a,b)
final int[] g = rowIndexes;
Swapper swapper = new Swapper() {
public void swap(int b, int c) {
int tmp = g[b];
g[b] = g[c];
g[c] = tmp;
}
};
// compare splitter[a] with columnView[rowIndexes[b]]
final ObjectMatrix1D columnView = matrix.viewColumn(column);
IntComparator comp = new IntComparator() {
public int compare(int a, int b) {
Comparable av = (Comparable) (splitters[a]);
Comparable bv = (Comparable) (columnView.getQuick(g[b]));
int r = av.compareTo(bv);
return r < 0 ? -1 : (r == 0 ? 0 : 1);
}
};
// compare columnView[rowIndexes[a]] with columnView[rowIndexes[b]]
IntComparator comp2 = new IntComparator() {
public int compare(int a, int b) {
Comparable av = (Comparable) (columnView.getQuick(g[a]));
Comparable bv = (Comparable) (columnView.getQuick(g[b]));
int r = av.compareTo(bv);
return r < 0 ? -1 : (r == 0 ? 0 : 1);
}
};
// compare splitter[a] with splitter[b]
IntComparator comp3 = new IntComparator() {
public int compare(int a, int b) {
Comparable av = (Comparable) (splitters[a]);
Comparable bv = (Comparable) (splitters[b]);
int r = av.compareTo(bv);
return r < 0 ? -1 : (r == 0 ? 0 : 1);
}
};
// generic partitioning does the main work of reordering row indexes
cern.colt.Partitioning.genericPartition(rowFrom, rowTo, splitFrom, splitTo, splitIndexes, comp, comp2, comp3, swapper);
}
use of cern.colt.function.IntComparator in project tdq-studio-se by Talend.
the class Sorting method sort.
/**
*Sorts the matrix rows according to the order induced by the specified comparator.
*The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa.
*The algorithm compares two rows (1-d matrices) at a time, determinining whether one is smaller, equal or larger than the other.
*To sort ranges use sub-ranging views. To sort columns by rows, use dice views. To sort descending, use flip views ...
*<p>
*<b>Example:</b>
*<pre>
*// sort by sum of values in a row
*ObjectMatrix1DComparator comp = new ObjectMatrix1DComparator() {
* public int compare(ObjectMatrix1D a, ObjectMatrix1D b) {
* Object as = a.zSum(); Object bs = b.zSum();
* return as < bs ? -1 : as == bs ? 0 : 1;
* }
*};
*sorted = quickSort(matrix,comp);
*</pre>
*
*@param matrix the matrix to be sorted.
*@param c the comparator to determine the order.
*@return a new matrix view having rows sorted as specified.
* <b>Note that the original matrix is left unaffected.</b>
*/
public ObjectMatrix2D sort(final ObjectMatrix2D matrix, final ObjectMatrix1DComparator c) {
// row indexes to reorder instead of matrix itself
int[] rowIndexes = new int[matrix.rows()];
for (int i = rowIndexes.length; --i >= 0; ) rowIndexes[i] = i;
// precompute views for speed
final ObjectMatrix1D[] views = new ObjectMatrix1D[matrix.rows()];
for (int i = views.length; --i >= 0; ) views[i] = matrix.viewRow(i);
IntComparator comp = new IntComparator() {
public int compare(int a, int b) {
// return c.compare(matrix.viewRow(a), matrix.viewRow(b));
return c.compare(views[a], views[b]);
}
};
runSort(rowIndexes, 0, rowIndexes.length, comp);
// take all columns in the original order
return matrix.viewSelection(rowIndexes, null);
}
use of cern.colt.function.IntComparator in project tdq-studio-se by Talend.
the class Sorting method sort.
/**
*Sorts the vector into ascending order, according to the <i>natural ordering</i>.
*The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa.
*To sort ranges use sub-ranging views. To sort descending, use flip views ...
*<p>
*<b>Example:</b>
*<table border="1" cellspacing="0">
* <tr nowrap>
* <td valign="top"><tt> 7, 1, 3, 1<br>
* </tt></td>
* <td valign="top">
* <p><tt> ==> 1, 1, 3, 7<br>
* The vector IS NOT SORTED.<br>
* The new VIEW IS SORTED.</tt></p>
* </td>
* </tr>
*</table>
*
*@param vector the vector to be sorted.
*@return a new sorted vector (matrix) view.
* <b>Note that the original matrix is left unaffected.</b>
*/
public ObjectMatrix1D sort(final ObjectMatrix1D vector) {
// row indexes to reorder instead of matrix itself
int[] indexes = new int[vector.size()];
for (int i = indexes.length; --i >= 0; ) indexes[i] = i;
IntComparator comp = new IntComparator() {
public int compare(int a, int b) {
Comparable av = (Comparable) (vector.getQuick(a));
Comparable bv = (Comparable) (vector.getQuick(b));
int r = av.compareTo(bv);
return r < 0 ? -1 : (r > 0 ? 1 : 0);
}
};
runSort(indexes, 0, indexes.length, comp);
return vector.viewSelection(indexes);
}
Aggregations