use of com.github.zhenwei.core.pqc.math.ntru.polynomial.DenseTernaryPolynomial in project LinLong-Java by zhenwei1108.
the class NTRUEncryptionKeyPairGenerator method generateKeyPair.
/**
* Generates a new encryption key pair.
*
* @return a key pair
*/
public AsymmetricCipherKeyPair generateKeyPair() {
int N = params.N;
int q = params.q;
int df = params.df;
int df1 = params.df1;
int df2 = params.df2;
int df3 = params.df3;
int dg = params.dg;
boolean fastFp = params.fastFp;
boolean sparse = params.sparse;
Polynomial t;
IntegerPolynomial fq;
IntegerPolynomial fp = null;
// choose a random f that is invertible mod 3 and q
while (true) {
IntegerPolynomial f;
// choose random t, calculate f and fp
if (fastFp) {
// if fastFp=true, f is always invertible mod 3
t = params.polyType == NTRUParameters.TERNARY_POLYNOMIAL_TYPE_SIMPLE ? Util.generateRandomTernary(N, df, df, sparse, params.getRandom()) : ProductFormPolynomial.generateRandom(N, df1, df2, df3, df3, params.getRandom());
f = t.toIntegerPolynomial();
f.mult(3);
f.coeffs[0] += 1;
} else {
t = params.polyType == NTRUParameters.TERNARY_POLYNOMIAL_TYPE_SIMPLE ? Util.generateRandomTernary(N, df, df - 1, sparse, params.getRandom()) : ProductFormPolynomial.generateRandom(N, df1, df2, df3, df3 - 1, params.getRandom());
f = t.toIntegerPolynomial();
fp = f.invertF3();
if (fp == null) {
continue;
}
}
fq = f.invertFq(q);
if (fq == null) {
continue;
}
break;
}
// if fastFp=true, fp=1
if (fastFp) {
fp = new IntegerPolynomial(N);
fp.coeffs[0] = 1;
}
// choose a random g that is invertible mod q
DenseTernaryPolynomial g;
while (true) {
g = DenseTernaryPolynomial.generateRandom(N, dg, dg - 1, params.getRandom());
if (g.invertFq(q) != null) {
break;
}
}
IntegerPolynomial h = g.mult(fq, q);
h.mult3(q);
h.ensurePositive(q);
g.clear();
fq.clear();
NTRUEncryptionPrivateKeyParameters priv = new NTRUEncryptionPrivateKeyParameters(h, t, fp, params.getEncryptionParameters());
NTRUEncryptionPublicKeyParameters pub = new NTRUEncryptionPublicKeyParameters(h, params.getEncryptionParameters());
return new AsymmetricCipherKeyPair(pub, priv);
}
use of com.github.zhenwei.core.pqc.math.ntru.polynomial.DenseTernaryPolynomial in project LinLong-Java by zhenwei1108.
the class NTRUEngine method decrypt.
/**
* @param e
* @param priv_t a polynomial such that if <code>fastFp=true</code>, <code>f=1+3*priv_t</code>;
* otherwise, <code>f=priv_t</code>
* @param priv_fp
* @return an IntegerPolynomial representing the output.
*/
protected IntegerPolynomial decrypt(IntegerPolynomial e, Polynomial priv_t, IntegerPolynomial priv_fp) {
IntegerPolynomial a;
if (params.fastFp) {
a = priv_t.mult(e, params.q);
a.mult(3);
a.add(e);
} else {
a = priv_t.mult(e, params.q);
}
a.center0(params.q);
a.mod3();
IntegerPolynomial c = params.fastFp ? a : new DenseTernaryPolynomial(a).mult(priv_fp, 3);
c.center0(3);
return c;
}
use of com.github.zhenwei.core.pqc.math.ntru.polynomial.DenseTernaryPolynomial in project LinLong-Java by zhenwei1108.
the class NTRUEngine method generateBlindingPoly.
/**
* Deterministically generates a blinding polynomial from a seed and a message representative.
*
* @param seed
* @param M message representative
* @return a blinding polynomial
*/
private Polynomial generateBlindingPoly(byte[] seed, byte[] M) {
IndexGenerator ig = new IndexGenerator(seed, params);
if (params.polyType == NTRUParameters.TERNARY_POLYNOMIAL_TYPE_PRODUCT) {
SparseTernaryPolynomial r1 = new SparseTernaryPolynomial(generateBlindingCoeffs(ig, params.dr1));
SparseTernaryPolynomial r2 = new SparseTernaryPolynomial(generateBlindingCoeffs(ig, params.dr2));
SparseTernaryPolynomial r3 = new SparseTernaryPolynomial(generateBlindingCoeffs(ig, params.dr3));
return new ProductFormPolynomial(r1, r2, r3);
} else {
int dr = params.dr;
boolean sparse = params.sparse;
int[] r = generateBlindingCoeffs(ig, dr);
if (sparse) {
return new SparseTernaryPolynomial(r);
} else {
return new DenseTernaryPolynomial(r);
}
}
}
Aggregations