use of com.graphhopper.isochrone.algorithm.ReadableTriangulation in project graphhopper by graphhopper.
the class PtIsochroneResource method doGet.
@GET
@Produces({ MediaType.APPLICATION_JSON })
public Response doGet(@QueryParam("point") GHLocationParam sourceParam, @QueryParam("time_limit") @DefaultValue("600") long seconds, @QueryParam("reverse_flow") @DefaultValue("false") boolean reverseFlow, @QueryParam("pt.earliest_departure_time") @NotNull OffsetDateTimeParam departureTimeParam, @QueryParam("pt.blocked_route_types") @DefaultValue("0") int blockedRouteTypes, @QueryParam("result") @DefaultValue("multipolygon") String format) {
Instant initialTime = departureTimeParam.get().toInstant();
GHLocation location = sourceParam.get();
double targetZ = seconds * 1000;
GeometryFactory geometryFactory = new GeometryFactory();
final FlagEncoder footEncoder = encodingManager.getEncoder("foot");
final Weighting weighting = new FastestWeighting(footEncoder);
DefaultSnapFilter snapFilter = new DefaultSnapFilter(weighting, graphHopperStorage.getEncodingManager().getBooleanEncodedValue(Subnetwork.key("foot")));
PtLocationSnapper.Result snapResult = new PtLocationSnapper(graphHopperStorage, locationIndex, gtfsStorage).snapAll(Arrays.asList(location), Arrays.asList(snapFilter));
GraphExplorer graphExplorer = new GraphExplorer(snapResult.queryGraph, gtfsStorage.getPtGraph(), weighting, gtfsStorage, RealtimeFeed.empty(), reverseFlow, false, false, 5.0, reverseFlow, blockedRouteTypes);
MultiCriteriaLabelSetting router = new MultiCriteriaLabelSetting(graphExplorer, reverseFlow, false, false, 0, Collections.emptyList());
Map<Coordinate, Double> z1 = new HashMap<>();
NodeAccess nodeAccess = snapResult.queryGraph.getNodeAccess();
for (Label label : router.calcLabels(snapResult.nodes.get(0), initialTime)) {
if (!((label.currentTime - initialTime.toEpochMilli()) * (reverseFlow ? -1 : 1) <= targetZ)) {
break;
}
if (label.node.streetNode != -1) {
Coordinate nodeCoordinate = new Coordinate(nodeAccess.getLon(label.node.streetNode), nodeAccess.getLat(label.node.streetNode));
z1.merge(nodeCoordinate, (double) (label.currentTime - initialTime.toEpochMilli()) * (reverseFlow ? -1 : 1), Math::min);
} else if (label.edge != null && (label.edge.getType() == GtfsStorage.EdgeType.EXIT_PT || label.edge.getType() == GtfsStorage.EdgeType.ENTER_PT)) {
GtfsStorage.PlatformDescriptor platformDescriptor = label.edge.getPlatformDescriptor();
Stop stop = gtfsStorage.getGtfsFeeds().get(platformDescriptor.feed_id).stops.get(platformDescriptor.stop_id);
Coordinate nodeCoordinate = new Coordinate(stop.stop_lon, stop.stop_lat);
z1.merge(nodeCoordinate, (double) (label.currentTime - initialTime.toEpochMilli()) * (reverseFlow ? -1 : 1), Math::min);
}
}
if (format.equals("multipoint")) {
MultiPoint exploredPoints = geometryFactory.createMultiPointFromCoords(z1.keySet().toArray(new Coordinate[0]));
return wrap(exploredPoints);
} else {
MultiPoint exploredPoints = geometryFactory.createMultiPointFromCoords(z1.keySet().toArray(new Coordinate[0]));
// Get at least all nodes within our bounding box (I think convex hull would be enough.)
// I think then we should have all possible encroaching points. (Proof needed.)
locationIndex.query(BBox.fromEnvelope(exploredPoints.getEnvelopeInternal()), edgeId -> {
EdgeIteratorState edge = snapResult.queryGraph.getEdgeIteratorStateForKey(edgeId * 2);
z1.merge(new Coordinate(nodeAccess.getLon(edge.getBaseNode()), nodeAccess.getLat(edge.getBaseNode())), Double.MAX_VALUE, Math::min);
z1.merge(new Coordinate(nodeAccess.getLon(edge.getAdjNode()), nodeAccess.getLat(edge.getAdjNode())), Double.MAX_VALUE, Math::min);
});
exploredPoints = geometryFactory.createMultiPointFromCoords(z1.keySet().toArray(new Coordinate[0]));
CoordinateList siteCoords = DelaunayTriangulationBuilder.extractUniqueCoordinates(exploredPoints);
List<ConstraintVertex> constraintVertices = new ArrayList<>();
for (Object siteCoord : siteCoords) {
Coordinate coord = (Coordinate) siteCoord;
constraintVertices.add(new ConstraintVertex(coord));
}
ConformingDelaunayTriangulator cdt = new ConformingDelaunayTriangulator(constraintVertices, JTS_TOLERANCE);
cdt.setConstraints(new ArrayList(), new ArrayList());
cdt.formInitialDelaunay();
QuadEdgeSubdivision tin = cdt.getSubdivision();
for (Vertex vertex : (Collection<Vertex>) tin.getVertices(true)) {
if (tin.isFrameVertex(vertex)) {
vertex.setZ(Double.MAX_VALUE);
} else {
Double aDouble = z1.get(vertex.getCoordinate());
if (aDouble != null) {
vertex.setZ(aDouble);
} else {
vertex.setZ(Double.MAX_VALUE);
}
}
}
ReadableTriangulation triangulation = ReadableTriangulation.wrap(tin);
ContourBuilder contourBuilder = new ContourBuilder(triangulation);
MultiPolygon isoline = contourBuilder.computeIsoline(targetZ, triangulation.getEdges());
// debugging tool
if (format.equals("triangulation")) {
Response response = new Response();
for (Vertex vertex : (Collection<Vertex>) tin.getVertices(true)) {
JsonFeature feature = new JsonFeature();
feature.setGeometry(geometryFactory.createPoint(vertex.getCoordinate()));
HashMap<String, Object> properties = new HashMap<>();
properties.put("z", vertex.getZ());
feature.setProperties(properties);
response.polygons.add(feature);
}
for (QuadEdge edge : (Collection<QuadEdge>) tin.getPrimaryEdges(false)) {
JsonFeature feature = new JsonFeature();
feature.setGeometry(edge.toLineSegment().toGeometry(geometryFactory));
HashMap<String, Object> properties = new HashMap<>();
feature.setProperties(properties);
response.polygons.add(feature);
}
JsonFeature feature = new JsonFeature();
feature.setGeometry(isoline);
HashMap<String, Object> properties = new HashMap<>();
properties.put("z", targetZ);
feature.setProperties(properties);
response.polygons.add(feature);
response.info.copyrights.addAll(ResponsePathSerializer.COPYRIGHTS);
return response;
} else {
return wrap(isoline);
}
}
}
Aggregations