use of com.linkedin.d2.balancer.strategies.degrader.DegraderLoadBalancerStrategyV3.DegraderLoadBalancerState in project rest.li by linkedin.
the class DegraderLoadBalancerStrategyV2_1 method doUpdateState.
/**
* updateState
*
* We have two mechanisms to influence the health and traffic patterns of the client. They are
* by load balancing (switching traffic from one host to another) and by degrading service
* (dropping calls). We load balance by allocating points in a consistent hash ring based on the
* computedDropRate of the individual TrackerClients, which takes into account the latency
* seen by that TrackerClient's requests. We can alternatively, if the cluster is
* unhealthy (by using a high latency watermark) drop a portion of traffic across all tracker
* clients corresponding to this cluster.
*
* The reason we do not currently consider error rate when adjusting the hash ring is that
* there are legitimate errors that servers can send back for clients to handle, such as
* 400 return codes. A potential improvement would be to catch transport level exceptions and 500
* level return codes, but the implication of that would need to be carefully understood and documented.
*
* We don't want both to reduce hash points and allow clients to manage their own drop rates
* because the clients do not have a global view that the load balancing strategy does. Without
* a global view, the clients won't know if it already has a reduced number of hash points. If the
* client continues to drop at the same drop rate as before their points have been reduced, then
* the client would have its outbound request reduced by both reduction in points and the client's
* drop rate. To avoid this, the drop rate is managed globally by the load balancing strategy and
* provided to each client. The strategy will ALTERNATE between adjusting the hash ring points or
* the global drop rate in order to avoid double penalizing a client. See below:
*
* Period 1
* We found the average latency is greater than high water mark.
* Then increase the global drop rate for this cluster (let's say from 0% to 20%)
* so 20% of all calls gets dropped.
* .
* .
* Period 2
* The average latency is still higher than high water mark and we found
* it is especially high for few specific clients in the cluster
* Then reduce the number of hash points for those clients in the hash ring, with the hope we'll
* redirect the traffic to "healthier" client and reduce the average latency
* .
* .
* Period 3
* The average latency is still higher than high water mark
* Then we will alternate strategy by increasing the global rate for the whole cluster again
* .
* .
* repeat until the latency becomes smaller than high water mark and higher than low water mark
* to maintain the state. If the latency becomes lower than low water mark that means the cluster
* is getting healthier so we can serve more traffic so we'll start recovery as explained below
*
* We also have a mechanism for recovery if the number of points in the hash ring is not
* enough to receive traffic. The initialRecoveryLevel is a number between 0.0 and 1.0, and
* corresponds to a weight of the tracker client's full hash points. e.g. if a client
* has a default 100 hash points in a ring, 0.0 means there's 0 point for the client in the ring
* and 1.0 means there are 100 points in the ring for the client.
* The second configuration, rampFactor, will geometrically increase the
* previous recoveryLevel if traffic still hasn't been seen for that tracker client.
*
* The reason for using weight instead of real points is to allow an initialRecoveryLevel that corresponds to
* less than one hash point. This would be useful if a "cooling off" period is desirable for the
* misbehaving tracker clients i.e. given a full weight of 100 hash points, 0.005 initialRecoverylevel
* 0 hashpoints at start and rampFactor = 2 means that there will be one cooling off period before the
* client is reintroduced into the hash ring (see below).
*
* Period 1
* 100 * 0.005 = 0.5 point -> So nothing in the hashring
*
* Period 2
* 100 * (0.005 * 2 because of rampfactor) = 1 point -> So we'll add one point in the hashring
*
* Another example, given initialRecoveryLevel = 0.01, rampFactor = 2, and default tracker client hash
* points of 100, we will increase the hash points in this pattern on successive update States:
* 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, etc. -> 1, 2, 4, 8, 16, 32 points in the hashring and aborting
* as soon as calls are recorded for that tracker client.
*
* We also have highWaterMark and lowWaterMark as properties of the DegraderLoadBalancer strategy
* so that the strategy can make decisions on whether to start dropping traffic GLOBALLY across
* all tracker clients for this cluster. The amount of traffic to drop is controlled by the
* globalStepUp and globalStepDown properties, where globalStepUp controls how much the global
* drop rate increases per interval, and globalStepDown controls how much the global drop rate
* decreases per interval. We only step up the global drop rate when the average cluster latency
* is higher than the highWaterMark, and only step down the global drop rate when the average
* cluster latency is lower than the global drop rate.
*
* This code is thread reentrant. Multiple threads can potentially call this concurrently, and so
* callers must pass in the DegraderLoadBalancerState that they based their shouldUpdate() call on.
* The multiple threads may have different views of the trackerClients latency, but this is
* ok as the new state in the end will have only taken one action (either loadbalance or
* call-dropping with at most one step). Currently we will not call this concurrently, as
* checkUpdateState will control entry to a single thread.
*
* @param clusterGenerationId
* @param oldState
* @param config
* @param trackerClientUpdaters
*/
private static DegraderLoadBalancerState doUpdateState(long clusterGenerationId, DegraderLoadBalancerState oldState, DegraderLoadBalancerStrategyConfig config, List<TrackerClientUpdater> trackerClientUpdaters) {
debug(_log, "updating state for: ", trackerClientUpdaters);
double sumOfClusterLatencies = 0.0;
double computedClusterDropSum = 0.0;
double computedClusterWeight = 0.0;
long totalClusterCallCount = 0;
boolean hashRingChanges = false;
boolean recoveryMapChanges = false;
DegraderLoadBalancerState.Strategy strategy = oldState.getStrategy();
Map<TrackerClient, Double> oldRecoveryMap = oldState.getRecoveryMap();
Map<TrackerClient, Double> newRecoveryMap = new HashMap<TrackerClient, Double>(oldRecoveryMap);
double currentOverrideDropRate = oldState.getCurrentOverrideDropRate();
double initialRecoveryLevel = config.getInitialRecoveryLevel();
double ringRampFactor = config.getRingRampFactor();
int pointsPerWeight = config.getPointsPerWeight();
DegraderLoadBalancerState newState;
for (TrackerClientUpdater clientUpdater : trackerClientUpdaters) {
TrackerClient client = clientUpdater.getTrackerClient();
double averageLatency = client.getDegraderControl(DEFAULT_PARTITION_ID).getLatency();
long callCount = client.getDegraderControl(DEFAULT_PARTITION_ID).getCallCount();
oldState.getPreviousMaxDropRate().put(client, clientUpdater.getMaxDropRate());
sumOfClusterLatencies += averageLatency * callCount;
totalClusterCallCount += callCount;
double clientDropRate = client.getDegraderControl(DEFAULT_PARTITION_ID).getCurrentComputedDropRate();
computedClusterDropSum += client.getPartitionWeight(DEFAULT_PARTITION_ID) * clientDropRate;
computedClusterWeight += client.getPartitionWeight(DEFAULT_PARTITION_ID);
boolean recoveryMapContainsClient = newRecoveryMap.containsKey(client);
// points in the hash ring for the clients.
if (callCount == 0) {
// due solely to low volume.
if (recoveryMapContainsClient) {
// it may do nothing.
if (strategy == DegraderLoadBalancerState.Strategy.LOAD_BALANCE) {
double oldMaxDropRate = clientUpdater.getMaxDropRate();
double transmissionRate = 1.0 - oldMaxDropRate;
if (transmissionRate <= 0.0) {
// We use the initialRecoveryLevel to indicate how many points to initially set
// the tracker client to when traffic has stopped flowing to this node.
transmissionRate = initialRecoveryLevel;
} else {
transmissionRate *= ringRampFactor;
transmissionRate = Math.min(transmissionRate, 1.0);
}
double newMaxDropRate = 1.0 - transmissionRate;
clientUpdater.setMaxDropRate(newMaxDropRate);
}
recoveryMapChanges = true;
}
} else //else we don't really need to change the client maxDropRate.
if (recoveryMapContainsClient) {
// else if the recovery map contains the client and the call count was > 0
// tough love here, once the rehab clients start taking traffic, we
// restore their maxDropRate to it's original value, and unenroll them
// from the program.
// This is safe because the hash ring points are controlled by the
// computedDropRate variable, and the call dropping rate is controlled by
// the overrideDropRate. The maxDropRate only serves to cap the computedDropRate and
// overrideDropRate.
// We store the maxDropRate and restore it here because the initialRecoveryLevel could
// potentially be higher than what the default maxDropRate allowed. (the maxDropRate doesn't
// necessarily have to be 1.0). For instance, if the maxDropRate was 0.99, and the
// initialRecoveryLevel was 0.05 then we need to store the old maxDropRate.
clientUpdater.setMaxDropRate(newRecoveryMap.get(client));
newRecoveryMap.remove(client);
recoveryMapChanges = true;
}
}
double computedClusterDropRate = computedClusterDropSum / computedClusterWeight;
debug(_log, "total cluster call count: ", totalClusterCallCount);
debug(_log, "computed cluster drop rate for ", trackerClientUpdaters.size(), " nodes: ", computedClusterDropRate);
if (oldState.getClusterGenerationId() == clusterGenerationId && totalClusterCallCount <= 0 && !recoveryMapChanges) {
// if the cluster has not been called recently (total cluster call count is <= 0)
// and we already have a state with the same set of URIs (same cluster generation),
// and no clients are in rehab, then don't change anything.
debug(_log, "New state is the same as the old state so we're not changing anything. Old state = ", oldState, ", config=", config);
return new DegraderLoadBalancerState(oldState, clusterGenerationId, config.getUpdateIntervalMs(), config.getClock().currentTimeMillis());
}
// update our overrides.
double newCurrentAvgClusterLatency = -1;
if (totalClusterCallCount > 0) {
newCurrentAvgClusterLatency = sumOfClusterLatencies / totalClusterCallCount;
}
debug(_log, "average cluster latency: ", newCurrentAvgClusterLatency);
// This points map stores how many hash map points to allocate for each tracker client.
Map<URI, Integer> points = new HashMap<URI, Integer>();
Map<URI, Integer> oldPointsMap = oldState.getPointsMap();
for (TrackerClientUpdater clientUpdater : trackerClientUpdaters) {
TrackerClient client = clientUpdater.getTrackerClient();
double successfulTransmissionWeight;
URI clientUri = client.getUri();
// Don't take into account cluster health when calculating the number of points
// for each client. This is because the individual clients already take into account
// latency, and a successfulTransmissionWeight can and should be made
// independent of other nodes in the cluster. Otherwise, one unhealthy client in a small
// cluster can take down the entire cluster if the avg latency is too high.
// The global drop rate will take into account the cluster latency. High cluster-wide error
// rates are not something d2 can address.
//
// this client's maxDropRate and currentComputedDropRate may have been adjusted if it's in the
// rehab program (to gradually send traffic it's way).
double dropRate = Math.min(client.getDegraderControl(DEFAULT_PARTITION_ID).getCurrentComputedDropRate(), clientUpdater.getMaxDropRate());
// calculate the weight as the probability of successful transmission to this
// node divided by the probability of successful transmission to the entire
// cluster
successfulTransmissionWeight = client.getPartitionWeight(DEFAULT_PARTITION_ID) * (1.0 - dropRate);
// calculate the weight as the probability of a successful transmission to this node
// multiplied by the client's self-defined weight. thus, the node's final weight
// takes into account both the self defined weight (to account for different
// hardware in the same cluster) and the performance of the node (as defined by the
// node's degrader).
debug(_log, "computed new weight for uri ", clientUri, ": ", successfulTransmissionWeight);
// keep track if we're making actual changes to the Hash Ring in this updateState.
int newPoints = (int) (successfulTransmissionWeight * pointsPerWeight);
if (newPoints == 0) {
// We are choking off traffic to this tracker client.
// Enroll this tracker client in the recovery program so that
// we can make sure it still gets some traffic
Double oldMaxDropRate = clientUpdater.getMaxDropRate();
// set the default recovery level.
newPoints = (int) (initialRecoveryLevel * pointsPerWeight);
// Keep track of the original maxDropRate
if (!newRecoveryMap.containsKey(client)) {
// keep track of this client,
newRecoveryMap.put(client, oldMaxDropRate);
clientUpdater.setMaxDropRate(1.0 - initialRecoveryLevel);
}
}
points.put(clientUri, newPoints);
if (!oldPointsMap.containsKey(clientUri) || oldPointsMap.get(clientUri) != newPoints) {
hashRingChanges = true;
}
}
// if there were changes to the members of the cluster
if ((strategy == DegraderLoadBalancerState.Strategy.LOAD_BALANCE && hashRingChanges == true) || // strategy
oldState.getClusterGenerationId() != clusterGenerationId) {
// atomic overwrite
// try Call Dropping next time we updateState.
newState = new DegraderLoadBalancerState(config.getUpdateIntervalMs(), clusterGenerationId, points, config.getClock().currentTimeMillis(), DegraderLoadBalancerState.Strategy.CALL_DROPPING, currentOverrideDropRate, newCurrentAvgClusterLatency, true, newRecoveryMap, oldState.getServiceName(), oldState.getDegraderProperties(), totalClusterCallCount);
logState(oldState, newState, config, trackerClientUpdaters);
} else {
// time to try call dropping strategy, if necessary.
// we are explicitly setting the override drop rate to a number between 0 and 1, inclusive.
double newDropLevel = Math.max(0.0, currentOverrideDropRate);
// to get the cluster latency stabilized
if (newCurrentAvgClusterLatency > 0 && totalClusterCallCount >= config.getMinClusterCallCountHighWaterMark()) {
// statistically significant
if (newCurrentAvgClusterLatency >= config.getHighWaterMark() && currentOverrideDropRate != 1.0) {
// if the cluster latency is too high and we can drop more traffic
newDropLevel = Math.min(1.0, newDropLevel + config.getGlobalStepUp());
} else if (newCurrentAvgClusterLatency <= config.getLowWaterMark() && currentOverrideDropRate != 0.0) {
// else if the cluster latency is good and we can reduce the override drop rate
newDropLevel = Math.max(0.0, newDropLevel - config.getGlobalStepDown());
}
// else the averageClusterLatency is between Low and High, or we can't change anything more,
// then do not change anything.
} else if (newCurrentAvgClusterLatency > 0 && totalClusterCallCount >= config.getMinClusterCallCountLowWaterMark()) {
//but we might recover a bit if the latency is healthy
if (newCurrentAvgClusterLatency <= config.getLowWaterMark() && currentOverrideDropRate != 0.0) {
// the cluster latency is good and we can reduce the override drop rate
newDropLevel = Math.max(0.0, newDropLevel - config.getGlobalStepDown());
}
// else the averageClusterLatency is somewhat high but since the qps is not that high, we shouldn't degrade
} else {
// if we enter here that means we have very low traffic. We should reduce the overrideDropRate, if possible.
// when we have below 1 QPS traffic, we should be pretty confident that the cluster can handle very low
// traffic. Of course this is depending on the MinClusterCallCountLowWaterMark that the service owner sets.
// Another possible cause for this is if we had somehow choked off all traffic to the cluster, most
// likely in a one node/small cluster scenario. Obviously, we can't check latency here,
// we'll have to rely on the metric in the next updateState. If the cluster is still having
// latency problems, then we will oscillate between off and letting a little traffic through,
// and that is acceptable. If the latency, though high, is deemed acceptable, then the
// watermarks can be adjusted to let more traffic through.
newDropLevel = Math.max(0.0, newDropLevel - config.getGlobalStepDown());
}
if (newDropLevel != currentOverrideDropRate) {
overrideClusterDropRate(newDropLevel, trackerClientUpdaters);
}
// don't change the points map or the recoveryMap, but try load balancing strategy next time.
newState = new DegraderLoadBalancerState(config.getUpdateIntervalMs(), clusterGenerationId, oldPointsMap, config.getClock().currentTimeMillis(), DegraderLoadBalancerState.Strategy.LOAD_BALANCE, newDropLevel, newCurrentAvgClusterLatency, true, oldRecoveryMap, oldState.getServiceName(), oldState.getDegraderProperties(), totalClusterCallCount);
logState(oldState, newState, config, trackerClientUpdaters);
points = oldPointsMap;
}
// adjust the min call count for each client based on the hash ring reduction and call dropping
// fraction.
overrideMinCallCount(currentOverrideDropRate, trackerClientUpdaters, points, pointsPerWeight);
return newState;
}
use of com.linkedin.d2.balancer.strategies.degrader.DegraderLoadBalancerStrategyV3.DegraderLoadBalancerState in project rest.li by linkedin.
the class DegraderLoadBalancerStrategyV2_1 method updateState.
private void updateState(long clusterGenerationId, List<TrackerClient> trackerClients, DegraderLoadBalancerStrategyConfig config) {
List<TrackerClientUpdater> clientUpdaters = new ArrayList<TrackerClientUpdater>();
for (TrackerClient client : trackerClients) {
clientUpdaters.add(new TrackerClientUpdater(client, DEFAULT_PARTITION_ID));
}
// doUpdateState has no side effects on _state or trackerClients.
// all changes to the trackerClients would be recorded in clientUpdaters
DegraderLoadBalancerState state = doUpdateState(clusterGenerationId, _state, config, clientUpdaters);
_state = state;
// only if state update succeeded, do we actually apply the recorded changes to trackerClients
for (TrackerClientUpdater clientUpdater : clientUpdaters) {
clientUpdater.update();
}
}
use of com.linkedin.d2.balancer.strategies.degrader.DegraderLoadBalancerStrategyV3.DegraderLoadBalancerState in project rest.li by linkedin.
the class DegraderLoadBalancerStateTest method testConcurrentGets.
private static void testConcurrentGets(int numberOfPartitions) {
DegraderLoadBalancerState subject = DegraderLoadBalancerTest.getStrategy().getState();
List<PartitionDegraderLoadBalancerState> a1 = concurrentGets(subject, numberOfPartitions);
List<PartitionDegraderLoadBalancerState> a2 = concurrentGets(subject, (numberOfPartitions * 2) + 1);
assertSameElements(a1, a2.subList(0, a1.size()));
}
use of com.linkedin.d2.balancer.strategies.degrader.DegraderLoadBalancerStrategyV3.DegraderLoadBalancerState in project rest.li by linkedin.
the class DegraderLoadBalancerStateTest method testConcurrentGetsAndSets.
private static void testConcurrentGetsAndSets(int numberOfPartitions) {
DegraderLoadBalancerState subject = DegraderLoadBalancerTest.getStrategy().getState();
List<PartitionDegraderLoadBalancerState> newStates = newPartitionStates((numberOfPartitions * 2) + 1);
List<PartitionDegraderLoadBalancerState> a1 = concurrentGetsAndSets(subject, newStates.subList(0, numberOfPartitions));
List<PartitionDegraderLoadBalancerState> a2 = concurrentGetsAndSets(subject, newStates);
assertSameElements(a1, a2.subList(0, a1.size()));
}
use of com.linkedin.d2.balancer.strategies.degrader.DegraderLoadBalancerStrategyV3.DegraderLoadBalancerState in project rest.li by linkedin.
the class DegraderLoadBalancerTest method testDegraderLoadBalancerStateComparison.
@Test(groups = { "small", "back-end" })
public void testDegraderLoadBalancerStateComparison() throws URISyntaxException {
long clusterGenerationId = 1;
long lastUpdated = 29999;
long updateIntervalMs = 5000;
DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState.Strategy strategy = DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState.Strategy.LOAD_BALANCE;
long currentAverageClusterLatency = 3000;
Map<String, Object> configMap = new HashMap<String, Object>();
configMap.put(PropertyKeys.HTTP_LB_LOW_WATER_MARK, 500d);
configMap.put(PropertyKeys.HTTP_LB_STRATEGY_PROPERTIES_POINTS_PER_WEIGHT, 120);
DegraderLoadBalancerStrategyConfig config = DegraderLoadBalancerStrategyConfig.createHttpConfigFromMap(configMap);
long clusterCallCount = 15;
Map<TrackerClient, DegraderLoadBalancerQuarantine> quarantineMap = new HashMap<>();
Map<TrackerClient, DegraderLoadBalancerQuarantine> quarantineStore = new HashMap<>();
double currentOverrideDropRate = 0.4;
boolean initialized = true;
String name = "degraderV2";
Map<URI, Integer> points = new HashMap<URI, Integer>();
Map<TrackerClient, Double> recoveryMap = new HashMap<TrackerClient, Double>();
URI uri1 = new URI("http://test.linkedin.com:10010/abc0");
URI uri2 = new URI("http://test.linkedin.com:10010/abc1");
URI uri3 = new URI("http://test.linkedin.com:10010/abc2");
points.put(uri1, 100);
points.put(uri2, 50);
points.put(uri3, 120);
RingFactory<URI> ringFactory = new DegraderRingFactory<>(config);
TestClock clock = new TestClock();
List<TrackerClient> clients = createTrackerClient(3, clock, null);
List<TrackerClientUpdater> clientUpdaters = new ArrayList<TrackerClientUpdater>();
for (TrackerClient client : clients) {
recoveryMap.put(client, 0.0);
clientUpdaters.add(new TrackerClientUpdater(client, DEFAULT_PARTITION_ID));
}
DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState oldStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated, strategy, currentOverrideDropRate, currentAverageClusterLatency, initialized, recoveryMap, name, null, clusterCallCount);
DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated, strategy, currentOverrideDropRate, currentAverageClusterLatency, initialized, recoveryMap, name, null, clusterCallCount);
assertTrue(DegraderLoadBalancerStrategyV2_1.isOldStateTheSameAsNewState(oldStateV2, newStateV2));
newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId + 1, points, lastUpdated, strategy, currentOverrideDropRate, currentAverageClusterLatency, initialized, recoveryMap, name, null, clusterCallCount);
assertFalse(DegraderLoadBalancerStrategyV2_1.isOldStateTheSameAsNewState(oldStateV2, newStateV2));
//we don't care about last updated
newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated + 30, strategy, currentOverrideDropRate, currentAverageClusterLatency, initialized, recoveryMap, name, null, clusterCallCount);
assertTrue(DegraderLoadBalancerStrategyV2_1.isOldStateTheSameAsNewState(oldStateV2, newStateV2));
points.put(uri1, 30);
newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated, strategy, currentOverrideDropRate, currentAverageClusterLatency, initialized, recoveryMap, name, null, clusterCallCount);
points.put(uri1, 100);
newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated, strategy, currentOverrideDropRate - 0.1, currentAverageClusterLatency, initialized, recoveryMap, name, null, clusterCallCount);
assertFalse(DegraderLoadBalancerStrategyV2_1.isOldStateTheSameAsNewState(oldStateV2, newStateV2));
//we don't care about averageClusterLatency as far as for printing the state
newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated, strategy, currentOverrideDropRate, currentAverageClusterLatency + 3, initialized, recoveryMap, name, null, clusterCallCount);
assertTrue(DegraderLoadBalancerStrategyV2_1.isOldStateTheSameAsNewState(oldStateV2, newStateV2));
for (TrackerClient client : clients) {
recoveryMap.put(client, 0.3);
}
newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated, strategy, currentOverrideDropRate, currentAverageClusterLatency, initialized, recoveryMap, name, null, clusterCallCount);
assertFalse(DegraderLoadBalancerStrategyV2_1.isOldStateTheSameAsNewState(oldStateV2, newStateV2));
//test state health comparison
assertFalse(DegraderLoadBalancerStrategyV2_1.isNewStateHealthy(newStateV2, config, clientUpdaters));
//make cluster average latency to be 300 to be lower than lowWaterMark but still not healthy because
//points map has clients with less than perfect health
newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated, strategy, currentOverrideDropRate, 300, initialized, recoveryMap, name, null, clusterCallCount);
assertFalse(DegraderLoadBalancerStrategyV2_1.isNewStateHealthy(newStateV2, config, clientUpdaters));
//make all points to have 120 so the cluster becomes "healthy"
points.put(uri1, 120);
points.put(uri2, 120);
points.put(uri3, 120);
newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated, strategy, currentOverrideDropRate, 300, initialized, recoveryMap, name, null, clusterCallCount);
assertTrue(DegraderLoadBalancerStrategyV2_1.isNewStateHealthy(newStateV2, config, clientUpdaters));
//if currentAverageClusterLatency is > low water mark then cluster becomes unhealthy
newStateV2 = new DegraderLoadBalancerStrategyV2_1.DegraderLoadBalancerState(updateIntervalMs, clusterGenerationId, points, lastUpdated, strategy, currentOverrideDropRate, currentAverageClusterLatency, initialized, recoveryMap, name, null, clusterCallCount);
assertFalse(DegraderLoadBalancerStrategyV2_1.isNewStateHealthy(newStateV2, config, clientUpdaters));
//test DegraderLoadBalancerV3
points.put(uri1, 100);
points.put(uri2, 50);
points.put(uri3, 120);
DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState.Strategy strategyV3 = DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState.Strategy.CALL_DROPPING;
DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState oldStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, currentAverageClusterLatency, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, currentAverageClusterLatency, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
assertTrue(DegraderLoadBalancerStrategyV3.isOldStateTheSameAsNewState(oldStateV3, newStateV3));
newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId + 1, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, currentAverageClusterLatency, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
assertTrue(DegraderLoadBalancerStrategyV3.isOldStateTheSameAsNewState(oldStateV3, newStateV3));
newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated + 300, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, currentAverageClusterLatency, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
assertTrue(DegraderLoadBalancerStrategyV3.isOldStateTheSameAsNewState(oldStateV3, newStateV3));
points.put(uri2, 77);
newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, currentAverageClusterLatency, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
assertFalse(DegraderLoadBalancerStrategyV3.isOldStateTheSameAsNewState(oldStateV3, newStateV3));
points.put(uri2, 50);
newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate + 0.4, currentAverageClusterLatency, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
assertFalse(DegraderLoadBalancerStrategyV3.isOldStateTheSameAsNewState(oldStateV3, newStateV3));
newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, currentAverageClusterLatency + 55, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
//we don't care about averageClusterLatency for comparing states
assertTrue(DegraderLoadBalancerStrategyV3.isOldStateTheSameAsNewState(oldStateV3, newStateV3));
for (TrackerClient client : clients) {
recoveryMap.put(client, 0.5);
}
newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, currentAverageClusterLatency, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
assertFalse(DegraderLoadBalancerStrategyV3.isOldStateTheSameAsNewState(oldStateV3, newStateV3));
//test state health comparison
assertFalse(DegraderLoadBalancerStrategyV3.isNewStateHealthy(newStateV3, config, clientUpdaters, DEFAULT_PARTITION_ID));
//make cluster average latency to be 300 to be lower than lowWaterMark but still not healthy because
//points map has clients with less than perfect health
newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, 300, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
assertFalse(DegraderLoadBalancerStrategyV3.isNewStateHealthy(newStateV3, config, clientUpdaters, DEFAULT_PARTITION_ID));
//make all points to have 120 so the cluster becomes "healthy"
points.put(uri1, 120);
points.put(uri2, 120);
points.put(uri3, 120);
newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, 300, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
assertTrue(DegraderLoadBalancerStrategyV3.isNewStateHealthy(newStateV3, config, clientUpdaters, DEFAULT_PARTITION_ID));
//if currentAverageClusterLatency is > low water mark then cluster becomes unhealthy
newStateV3 = new DegraderLoadBalancerStrategyV3.PartitionDegraderLoadBalancerState(clusterGenerationId, lastUpdated, initialized, ringFactory, points, strategyV3, currentOverrideDropRate, currentAverageClusterLatency, recoveryMap, name, null, clusterCallCount, quarantineMap, quarantineStore);
assertFalse(DegraderLoadBalancerStrategyV3.isNewStateHealthy(newStateV3, config, clientUpdaters, DEFAULT_PARTITION_ID));
}
Aggregations