use of com.linkedin.test.util.ClockedExecutor in project rest.li by linkedin.
the class TestDarkClusterStrategyFactory method setup.
@BeforeMethod
public void setup() {
_clusterInfoProvider = new MockClusterInfoProvider();
Facilities facilities = new MockFacilities(_clusterInfoProvider);
DarkClusterConfig darkClusterConfigOld = createRelativeTrafficMultiplierConfig(0.5f);
_clusterInfoProvider.addDarkClusterConfig(SOURCE_CLUSTER_NAME, PREEXISTING_DARK_CLUSTER_NAME, darkClusterConfigOld);
DarkClusterDispatcher darkClusterDispatcher = new DefaultDarkClusterDispatcher(new MockClient(false));
ClockedExecutor executor = new ClockedExecutor();
_rateLimiterSupplier = () -> new ConstantQpsRateLimiter(executor, executor, executor, TestConstantQpsDarkClusterStrategy.getBuffer(executor));
_strategyFactory = new DarkClusterStrategyFactoryImpl(facilities, SOURCE_CLUSTER_NAME, darkClusterDispatcher, new DoNothingNotifier(), new Random(SEED), new CountingVerifierManager(), _rateLimiterSupplier);
_strategyFactory.start();
}
use of com.linkedin.test.util.ClockedExecutor in project rest.li by linkedin.
the class TestAsyncPool method testCreationTimeout.
@Test(dataProvider = "creationTimeoutDataProvider")
public void testCreationTimeout(int poolSize, int concurrency) throws Exception {
// this object creation life cycle simulate the creation limbo state
ObjectCreatorThatNeverCreates objectCreatorThatNeverCreates = new ObjectCreatorThatNeverCreates();
ClockedExecutor clockedExecutor = new ClockedExecutor();
ExponentialBackOffRateLimiter rateLimiter = new ExponentialBackOffRateLimiter(0, 5000, 10, clockedExecutor, concurrency);
final AsyncPool<Object> pool = new AsyncPoolImpl<>("object pool", objectCreatorThatNeverCreates, poolSize, Integer.MAX_VALUE, Integer.MAX_VALUE, clockedExecutor, Integer.MAX_VALUE, AsyncPoolImpl.Strategy.MRU, 0, rateLimiter, clockedExecutor, new LongTracking());
pool.start();
List<FutureCallback<Object>> checkoutCallbacks = new ArrayList<>();
// Lets try to checkout more than the max Pool Size times when the object creator is in limbo state
for (int i = 0; i < poolSize * 2; i++) {
FutureCallback<Object> cb = new FutureCallback<>();
checkoutCallbacks.add(cb);
// Reset the exponential back off due to creation timeout error
rateLimiter.setPeriod(0);
pool.get(cb);
// run for the duration of default creation timeout
// TODO: parameterize the creation duration when the default creation gets parameterized
clockedExecutor.runFor(AsyncPoolImpl.DEFAULT_OBJECT_CREATION_TIMEOUT);
}
// drain all the pending tasks
clockedExecutor.runFor(AsyncPoolImpl.DEFAULT_OBJECT_CREATION_TIMEOUT);
// since the object creator went to limbo state
for (FutureCallback<Object> cb : checkoutCallbacks) {
try {
cb.get(100, TimeUnit.MILLISECONDS);
} catch (Exception ex) {
Assert.assertTrue(ex.getCause() instanceof ObjectCreationTimeoutException);
}
}
// Lets make sure the channel pool stats are at expected state
PoolStats stats = pool.getStats();
// Lets make sure all the limbo creations are timed out as expected
Assert.assertEquals(stats.getTotalCreateErrors(), poolSize * 2);
// No checkout should have happened due to object creator in limbo
Assert.assertEquals(stats.getCheckedOut(), 0);
// No Idle objects in the pool
Assert.assertEquals(stats.getIdleCount(), 0);
// Lets make sure that all the slots in the pool are reclaimed even if the object creation is in limbo
Assert.assertEquals(stats.getPoolSize(), 0);
// Since the max pending creation request reached the max pool size,
// we should have reached the maPool Size at least once
Assert.assertEquals(stats.getMaxPoolSize(), poolSize);
// Since no object is successfully created, expecting idle objects to be zero
Assert.assertEquals(stats.getIdleCount(), 0);
}
use of com.linkedin.test.util.ClockedExecutor in project rest.li by linkedin.
the class TestAsyncPool method testWaiterTimeout.
/**
* This test case verifies that the correct number of waiters are timed out while waiting for object from the pool
*
* Assumption: the channel pool max size is always bigger than the requested checkout size
*
*|----------A------------|---------------B---------------|---------------C--------------|-------------D--------------
* A = In Phase A , N number of object checkout request to the pool when there are no tasks pending in the rate
* limiter. A's Expected result = channel pool will create N number of new objects and check them out
* B = In Phase B, O number of object checkout request again sent to the channel pool when the pool has already
* checkout N number of objects, In this phase, the object creation inside the pool is blocked
* and the rate limiter will Queue the creation requests once it reached its maximum concurrency configured.
* C = Ih Phase C, P number of objects are returned to the pool which are created in Phase A, this will make
* the number of waiter queue size to be O-P
* D = In Phase D, A delay will be introduced to timeout the waiters and all the O-P waiters should be timed out.
* After the delay the object creation will be unblocked and it should create aleast the concurrency number of
* objects even though the waiters are timedout.
*
* @param numberOfCheckoutsInPhaseA the N number of checkout operations that will be performed in phase A
* @param numberOfCheckoutsInPhaseB the O number of checkout operations that will be performed in Phase B
* @param numbOfObjectsToBeReturnedInPhaseC the numeber of objects returned in Phase C
* @param poolSize size of the pool,
* @param concurrency concurrency of the rate limiter
*/
@Test(dataProvider = "waiterTimeoutDataProvider")
public void testWaiterTimeout(int numberOfCheckoutsInPhaseA, int numberOfCheckoutsInPhaseB, int numbOfObjectsToBeReturnedInPhaseC, int poolSize, int concurrency, int waiterTimeout) throws Exception {
CreationBlockableSynchronousLifecycle blockableObjectCreator = new CreationBlockableSynchronousLifecycle(numberOfCheckoutsInPhaseB, concurrency);
ScheduledExecutorService executor = Executors.newScheduledThreadPool(500);
ExponentialBackOffRateLimiter rateLimiter = new ExponentialBackOffRateLimiter(0, 5000, 10, executor, concurrency);
ClockedExecutor clockedExecutor = new ClockedExecutor();
final AsyncPool<Object> pool = new AsyncPoolImpl<>("object pool", blockableObjectCreator, poolSize, Integer.MAX_VALUE, waiterTimeout, clockedExecutor, Integer.MAX_VALUE, AsyncPoolImpl.Strategy.MRU, 0, rateLimiter, clockedExecutor, new LongTracking());
pool.start();
// Phase A : Checking out object 'numberOfCheckoutsInPhaseA' times !
List<Object> checkedOutObjects = performCheckout(numberOfCheckoutsInPhaseA, pool);
// Phase B : Blocking object creation and performing the checkout 'numberOfCheckoutsInPhaseB' times again
blockableObjectCreator.blockCreation();
Future<None> future = performUnblockingCheckout(numberOfCheckoutsInPhaseB, 0, pool);
blockableObjectCreator.waitUntilAllBlocked();
// Phase C : Returning the checkedOut objects from Phase A back to the object pool
for (int i = 0; i < numbOfObjectsToBeReturnedInPhaseC; i++) {
pool.put(checkedOutObjects.remove(0));
}
clockedExecutor.runFor(waiterTimeout);
// Phase D : All the object creation in phase B gets unblocked now
blockableObjectCreator.unblockCreation();
try {
future.get(5, TimeUnit.SECONDS);
} catch (Exception e) {
Assert.fail("Did not complete unblocked object creations on time, Unexpected interruption", e);
}
// Making sure the rate limiter pending tasks are submitted to the executor
AssertionMethods.assertWithTimeout(5000, () -> Assert.assertEquals(rateLimiter.numberOfPendingTasks(), 0, "Number of tasks has to drop to 0"));
executor.shutdown();
try {
if (!executor.awaitTermination(10, TimeUnit.SECONDS)) {
Assert.fail("Executor took too long to shutdown");
}
} catch (Exception ex) {
Assert.fail("Unexpected interruption while shutting down executor", ex);
}
PoolStats stats = pool.getStats();
Assert.assertEquals(stats.getTotalCreationIgnored(), numberOfCheckoutsInPhaseB - concurrency);
Assert.assertEquals(stats.getCheckedOut(), numberOfCheckoutsInPhaseA);
Assert.assertEquals(stats.getIdleCount(), concurrency);
Assert.assertEquals(stats.getTotalCreated(), numberOfCheckoutsInPhaseA + concurrency);
Assert.assertEquals(stats.getPoolSize(), numberOfCheckoutsInPhaseA + concurrency);
Assert.assertEquals(stats.getTotalWaiterTimedOut(), numberOfCheckoutsInPhaseB - numbOfObjectsToBeReturnedInPhaseC);
}
use of com.linkedin.test.util.ClockedExecutor in project rest.li by linkedin.
the class BaseTestSmoothRateLimiter method testSubmitExceedsPermits.
@Test(timeOut = TEST_TIMEOUT)
public void testSubmitExceedsPermits() throws Exception {
ClockedExecutor clockedExecutor = new ClockedExecutor();
AsyncRateLimiter rateLimiter = getRateLimiter(clockedExecutor, clockedExecutor, clockedExecutor);
rateLimiter.setRate(ONE_PERMIT_PER_PERIOD, ONE_MILLISECOND_PERIOD, UNLIMITED_BURST);
List<FutureCallback<None>> callbacks = new ArrayList<>();
IntStream.range(0, 5).forEach(i -> {
FutureCallback<None> callback = new FutureCallback<>();
rateLimiter.submit(callback);
callbacks.add(callback);
});
Assert.assertEquals(rateLimiter.getPendingTasksCount(), 5);
// trigger task to run them until current time
clockedExecutor.runFor(0);
// We have one permit to begin with so the first task should run immediate and left with 4 pending
callbacks.get(0).get();
Assert.assertEquals(rateLimiter.getPendingTasksCount(), 4);
IntStream.range(0, 1).forEach(i -> assertTrue(callbacks.get(i).isDone()));
IntStream.range(1, 5).forEach(i -> assertFalse(callbacks.get(i).isDone()));
// We increment the clock by one period and one more permit should have been issued
clockedExecutor.runFor(ONE_MILLISECOND_PERIOD);
callbacks.get(1).get();
Assert.assertEquals(rateLimiter.getPendingTasksCount(), 3);
IntStream.range(0, 2).forEach(i -> assertTrue(callbacks.get(i).isDone()));
IntStream.range(2, 5).forEach(i -> assertFalse(callbacks.get(i).isDone()));
clockedExecutor.runFor(ONE_MILLISECOND_PERIOD);
callbacks.get(2).get();
Assert.assertEquals(rateLimiter.getPendingTasksCount(), 2);
IntStream.range(0, 3).forEach(i -> assertTrue(callbacks.get(i).isDone()));
IntStream.range(3, 5).forEach(i -> assertFalse(callbacks.get(i).isDone()));
clockedExecutor.runFor(ONE_MILLISECOND_PERIOD);
callbacks.get(3).get();
Assert.assertEquals(rateLimiter.getPendingTasksCount(), 1);
IntStream.range(0, 4).forEach(i -> assertTrue(callbacks.get(i).isDone()));
IntStream.range(4, 5).forEach(i -> assertFalse(callbacks.get(i).isDone()));
clockedExecutor.runFor(ONE_MILLISECOND_PERIOD);
callbacks.get(4).get();
Assert.assertEquals(rateLimiter.getPendingTasksCount(), 0);
IntStream.range(0, 5).forEach(i -> assertTrue(callbacks.get(i).isDone()));
}
use of com.linkedin.test.util.ClockedExecutor in project rest.li by linkedin.
the class TestRampUpRateLimiter method testRampUp.
@Test(dataProvider = "targetRamp", timeOut = TEST_TIMEOUT * 1000)
public void testRampUp(int targetPermitsPerPeriod, float rampUp) {
boolean useRampUpMethod = false;
for (int k = 0; k < 2; k++, useRampUpMethod = true) {
_queue.clear();
ClockedExecutor clockedExecutor = new ClockedExecutor();
RampUpRateLimiter rateLimiter = new RampUpRateLimiterImpl(new SmoothRateLimiter(clockedExecutor, clockedExecutor, clockedExecutor, _queue, Integer.MAX_VALUE, SmoothRateLimiter.BufferOverflowMode.DROP, RATE_LIMITER_NAME_TEST), clockedExecutor);
rateLimiter.setRate(0, 1, MINIMUM_BURST, rampUp);
rateLimiter.setRate(targetPermitsPerPeriod, ONE_SECOND_PERIOD, MINIMUM_BURST, rampUp);
if (useRampUpMethod) {
// issue close to 0 permits to have a successful ramp up afterwards
rateLimiter.setRate(0, 1, MINIMUM_BURST, rampUp);
rateLimiter.setRate(targetPermitsPerPeriod, ONE_SECOND_PERIOD, MINIMUM_BURST, rampUp);
}
AtomicInteger time = new AtomicInteger(0);
AtomicInteger count = new AtomicInteger(0);
List<Integer> completionsPerSecond = new ArrayList<>();
int secondsToReachTargetState = (int) Math.ceil(targetPermitsPerPeriod / rampUp);
IntStream.range(0, (int) (rampUp * secondsToReachTargetState * (secondsToReachTargetState + 1))).forEach(i -> {
rateLimiter.submit(new Callback<None>() {
@Override
public void onError(Throwable e) {
throw new RuntimeException(e);
}
@Override
public void onSuccess(None result) {
// counting how many tasks per second we are receiving.
if (clockedExecutor.getCurrentTimeMillis() - time.get() >= ONE_SECOND_PERIOD) {
time.set(((int) (clockedExecutor.getCurrentTimeMillis() / 1000) * 1000));
completionsPerSecond.add(count.get());
count.set(1);
} else {
count.incrementAndGet();
}
}
});
});
// run the clock only for the exact amount of time that is necessary to reach the stable state
clockedExecutor.runFor((long) ((secondsToReachTargetState + 2) * 1000));
long countAboveMaxTarget = 0;
long countAtTarget = 0;
long countBelowTarget = 0;
for (Integer i : completionsPerSecond) {
if (i > targetPermitsPerPeriod)
countAboveMaxTarget++;
if (i == targetPermitsPerPeriod)
countAtTarget++;
if (i < targetPermitsPerPeriod)
countBelowTarget++;
}
assertEquals(countAboveMaxTarget, 0, "It should never go above the target QPS");
assertTrue(countAtTarget > 0, "There should be at least one at the target QPS since it should reach the stable state after a while");
long actualStepsToTarget = (countBelowTarget + 1) + // we want to account for the first seconds in which no task will return if the rampUp<1
(rampUp < 1 ? (long) (1 / rampUp) - 1 : 0);
// using countABelowTarget+1, because the one from the last number to the target is never counted
assertTrue(actualStepsToTarget >= secondsToReachTargetState * 0.9 && actualStepsToTarget <= Math.ceil(secondsToReachTargetState * 1.1), "There should be at least " + secondsToReachTargetState * 0.9 + " steps to get to the target and no more than " + Math.ceil(secondsToReachTargetState * 1.1) + ". Found: " + actualStepsToTarget + ".");
}
}
Aggregations