use of com.sri.ai.expresso.type.TupleType in project aic-expresso by aic-sri-international.
the class GrinderUtil method getTypeExpression.
/**
* Returns the type of given expression according to registry.
*/
public static Expression getTypeExpression(Expression expression, Registry registry) {
Expression result;
if (FormulaUtil.isApplicationOfBooleanConnective(expression)) {
result = makeSymbol("Boolean");
} else if (expression.getSyntacticFormType().equals(FunctionApplication.SYNTACTIC_FORM_TYPE) && list(SUM, PRODUCT, MAX).contains(expression.getFunctor().toString())) {
Expression argument = expression.get(0);
if (argument.getSyntacticFormType().equals(IntensionalSet.SYNTACTIC_FORM_TYPE)) {
IntensionalSet intensionalSetArgument = (IntensionalSet) argument;
Expression head = intensionalSetArgument.getHead();
// NOTE: Need to extend the registry as the index expressions in the quantifier may
// declare new types (i.e. function types).
Registry headRegistry = registry.extendWith(intensionalSetArgument.getIndexExpressions());
result = getTypeExpression(head, headRegistry);
} else if (argument.getSyntacticFormType().equals(ExtensionalSets.SYNTACTIC_FORM_TYPE)) {
List<Expression> arguments = ((AbstractExtensionalSet) argument).getElementsDefinitions();
result = getTypeOfCollectionOfNumericExpressionsWithDefaultInteger(arguments, registry);
} else if (expression.hasFunctor(MAX)) {
// MAX can also be applied to a bunch of numbers
result = getTypeOfCollectionOfNumericExpressionsWithDefaultInteger(expression.getArguments(), registry);
} else {
throw new Error(expression.getFunctor() + " defined for sets only but got " + expression.get(0));
}
} else if (Equality.isEquality(expression) || Disequality.isDisequality(expression)) {
result = makeSymbol("Boolean");
} else if (expression.equals(FunctorConstants.REAL_INTERVAL_CLOSED_CLOSED) || expression.equals(FunctorConstants.REAL_INTERVAL_CLOSED_OPEN) || expression.equals(FunctorConstants.REAL_INTERVAL_OPEN_CLOSED) || expression.equals(FunctorConstants.REAL_INTERVAL_OPEN_OPEN)) {
result = FunctionType.make(parse("Set"), parse("Number"), parse("Number"));
} else if (IfThenElse.isIfThenElse(expression)) {
Expression thenType = getTypeExpression(IfThenElse.thenBranch(expression), registry);
Expression elseType = getTypeExpression(IfThenElse.elseBranch(expression), registry);
if (thenType != null && elseType != null && (thenType.equals("Number") && isIntegerOrReal(elseType) || isIntegerOrReal(thenType) && elseType.equals("Number"))) {
result = makeSymbol("Number");
} else if (thenType != null && elseType != null && (thenType.equals("Integer") && elseType.equals("Real") || thenType.equals("Real") && elseType.equals("Integer"))) {
result = makeSymbol("Real");
} else if (thenType != null && (elseType == null || thenType.equals(elseType))) {
result = thenType;
} else if (elseType != null && (thenType == null || elseType.equals(thenType))) {
result = elseType;
} else if (thenType == null) {
throw new Error("Could not determine the types of then and else branches of '" + expression + "'.");
} else if (thenType.equals("Integer") && elseType.hasFunctor(INTEGER_INTERVAL)) {
// TODO: I know, I know, this treatment of integers and interval is terrible... will fix at some point
result = thenType;
} else if (thenType.hasFunctor(INTEGER_INTERVAL) && elseType.equals("Integer")) {
result = elseType;
} else if (thenType.hasFunctor(INTEGER_INTERVAL) && elseType.hasFunctor(INTEGER_INTERVAL)) {
IntegerInterval thenInterval = (IntegerInterval) thenType;
IntegerInterval elseInterval = (IntegerInterval) elseType;
Expression minimumLowerBound = LessThan.simplify(apply(LESS_THAN, thenInterval.getNonStrictLowerBound(), elseInterval.getNonStrictLowerBound()), registry).booleanValue() ? thenInterval.getNonStrictLowerBound() : elseInterval.getNonStrictLowerBound();
Expression maximumUpperBound = GreaterThan.simplify(apply(GREATER_THAN, thenInterval.getNonStrictUpperBound(), elseInterval.getNonStrictUpperBound()), registry).booleanValue() ? thenInterval.getNonStrictUpperBound() : elseInterval.getNonStrictUpperBound();
if (minimumLowerBound.equals(MINUS_INFINITY) && maximumUpperBound.equals(INFINITY)) {
result = makeSymbol("Integer");
} else {
result = apply(INTEGER_INTERVAL, minimumLowerBound, maximumUpperBound);
}
} else {
throw new Error("'" + expression + "' then and else branches have different types (" + thenType + " and " + elseType + " respectively).");
}
} else if (isCardinalityExpression(expression)) {
result = makeSymbol("Integer");
} else if (isNumericFunctionApplication(expression)) {
List<Expression> argumentTypes = mapIntoList(expression.getArguments(), e -> getTypeExpression(e, registry));
int firstNullArgumentTypeIndexIfAny = Util.getIndexOfFirstSatisfyingPredicateOrMinusOne(argumentTypes, t -> t == null);
if (firstNullArgumentTypeIndexIfAny != -1) {
throw new Error("Cannot determine type of " + expression.getArguments().get(firstNullArgumentTypeIndexIfAny) + ", which is needed for determining type of " + expression);
}
/**
* commonDomain is the co-domain shared by all argument function types, or empty tuple for arguments that are not function-typed.
* Therefore, if no argument is function-typed, it will be equal to the empty tuple.
*/
Expression commonDomain = getCommonDomainIncludingConversionOfNonFunctionTypesToNullaryFunctions(argumentTypes, registry);
if (commonDomain == null) {
throw new Error("Operator " + expression.getFunctor() + " applied to arguments of non-compatible types: " + expression + ", types of arguments are " + argumentTypes);
}
boolean noArgumentIsFunctionTyped = commonDomain.equals(EMPTY_TUPLE) && !thereExists(argumentTypes, t -> t.hasFunctor(FunctorConstants.FUNCTION_TYPE));
Expression resultCoDomain;
if (thereExists(argumentTypes, t -> Util.equals(getCoDomainOrItself(t), "Number"))) {
resultCoDomain = makeSymbol("Number");
} else if (thereExists(argumentTypes, t -> Util.equals(getCoDomainOrItself(t), "Real"))) {
resultCoDomain = makeSymbol("Real");
} else if (thereExists(argumentTypes, t -> isRealInterval(getCoDomainOrItself(t)))) {
resultCoDomain = makeSymbol("Real");
} else {
resultCoDomain = makeSymbol("Integer");
}
if (noArgumentIsFunctionTyped) {
result = resultCoDomain;
} else {
result = apply(FUNCTION_TYPE, commonDomain, resultCoDomain);
}
} else if (expression.hasFunctor(FunctorConstants.INTEGER_INTERVAL) || expression.hasFunctor(FunctorConstants.REAL_INTERVAL_CLOSED_CLOSED) || expression.hasFunctor(FunctorConstants.REAL_INTERVAL_OPEN_CLOSED) || expression.hasFunctor(FunctorConstants.REAL_INTERVAL_CLOSED_OPEN) || expression.hasFunctor(FunctorConstants.REAL_INTERVAL_OPEN_OPEN)) {
result = makeSymbol("Set");
} else if (isComparisonFunctionApplication(expression)) {
result = makeSymbol("Boolean");
} else if (expression.hasFunctor(FunctorConstants.FUNCTION_TYPE)) {
// very vague type for now
result = apply(FUNCTION_TYPE, makeSymbol("Set"), makeSymbol("Set"));
} else if (Sets.isIntensionalMultiSet(expression)) {
IntensionalSet set = (IntensionalSet) expression;
// NOTE: Need to extend the registry as the index expressions in the quantifier may
// declare new types (i.e. function types).
Registry headRegistry = registry.extendWith(set.getIndexExpressions());
Expression headType = getTypeExpression(set.getHead(), headRegistry);
result = new DefaultIntensionalMultiSet(list(), headType, TRUE);
} else if (Sets.isExtensionalSet(expression)) {
// very vague type for now
result = apply(FUNCTION_TYPE, makeSymbol("Set"));
} else if (expression.hasFunctor(FunctorConstants.INTERSECTION) || expression.hasFunctor(FunctorConstants.UNION) || expression.hasFunctor(FunctorConstants.INTENSIONAL_UNION)) {
// very vague type for now
result = apply(FUNCTION_TYPE, makeSymbol("Set"));
} else if (expression.getSyntacticFormType().equals(Symbol.SYNTACTIC_FORM_TYPE)) {
if (expression.getValue() instanceof Integer) {
result = makeSymbol("Integer");
} else if (expression.getValue() instanceof Double) {
result = makeSymbol("Real");
} else if (expression.getValue() instanceof Rational) {
Rational rational = (Rational) expression.getValue();
boolean isInteger = rational.isInteger();
result = makeSymbol(isInteger ? "Integer" : "Real");
} else if (expression.getValue() instanceof Number) {
result = makeSymbol("Number");
} else if (expression.getValue() instanceof String && expression.isStringLiteral()) {
result = makeSymbol("String");
} else if (expression.getValue() instanceof Boolean) {
result = makeSymbol("Boolean");
} else if (expression.equals(Expressions.INFINITY) || expression.equals(Expressions.MINUS_INFINITY)) {
result = makeSymbol("Number");
} else {
result = registry.getTypeOfRegisteredSymbol(expression);
if (result == null) {
Type type = getFirstSatisfyingPredicateOrNull(registry.getTypes(), t -> t.contains(expression));
if (type != null) {
result = parse(type.getName());
}
}
}
} else if (expression.hasFunctor(FunctorConstants.GET) && expression.numberOfArguments() == 2 && Expressions.isNumber(expression.get(1))) {
Expression argType = getTypeExpression(expression.get(0), registry);
if (TupleType.isTupleType(argType)) {
TupleType tupleType = (TupleType) GrinderUtil.fromTypeExpressionToItsIntrinsicMeaning(argType, registry);
result = parse(tupleType.getElementTypes().get(expression.get(1).intValue() - 1).toString());
} else {
throw new Error("get type from tuple for '" + expression + "' currently not supported.");
}
} else if (expression.hasFunctor(FunctorConstants.TUPLE_TYPE)) {
// Is a type expression already.
result = expression;
} else if (expression.getSyntacticFormType().equals(FunctionApplication.SYNTACTIC_FORM_TYPE)) {
Expression functionType = getTypeExpression(expression.getFunctor(), registry);
if (functionType == null) {
throw new Error("Type of '" + expression.getFunctor() + "' required, but unknown to registry.");
}
Expression coDomain = FunctionType.getCodomain(functionType);
List<Expression> argumentsTypesList = FunctionType.getArgumentList(functionType);
if (expression.getArguments().size() != argumentsTypesList.size()) {
throw new Error("Function " + expression.getFunctor() + " is of type " + functionType + " but has incorrect number of arguments = " + expression.getArguments());
}
for (int idx = 0; idx < expression.getArguments().size(); idx++) {
Expression arg = expression.get(idx);
Expression argExprType = argumentsTypesList.get(idx);
Type argType = registry.getType(argExprType);
if (!isSubtypeOf(arg, argType, registry)) {
throw new Error("Function " + expression.getFunctor() + " is of type " + functionType + " but has arguments that are not legal subtypes [#" + idx + "] = " + expression.getArguments());
}
}
result = coDomain;
} else if (Tuple.isTuple(expression)) {
List<Expression> elementTypes = expression.getArguments().stream().map(element -> getTypeExpression(element, registry)).collect(Collectors.toList());
result = TupleType.make(elementTypes);
} else if (expression instanceof QuantifiedExpressionWithABody) {
QuantifiedExpressionWithABody quantifiedExpressionWithABody = (QuantifiedExpressionWithABody) expression;
// NOTE: Need to extend the registry as the index expressions in the quantifier may
// declare new types (i.e. function types).
Registry quantifiedExpressionWithABodyRegistry = registry.extendWith(quantifiedExpressionWithABody.getIndexExpressions());
result = getTypeExpression(quantifiedExpressionWithABody.getBody(), quantifiedExpressionWithABodyRegistry);
} else if (expression instanceof LambdaExpression) {
LambdaExpression lambdaExpression = (LambdaExpression) expression;
Collection<Expression> domain = IndexExpressions.getIndexDomainsOfQuantifiedExpression(lambdaExpression);
IndexExpressionsSet indexExpressions = lambdaExpression.getIndexExpressions();
Registry lambdaExpressionWithABodyRegistry = registry.extendWith(indexExpressions);
Expression coDomain = getTypeExpression(lambdaExpression.getBody(), lambdaExpressionWithABodyRegistry);
result = Expressions.apply(FUNCTION_TYPE, domain, coDomain);
} else if (expression instanceof AbstractExpressionWrapper) {
Expression innerExpression = ((AbstractExpressionWrapper) expression).getInnerExpression();
result = getTypeExpression(innerExpression, registry);
} else {
throw new Error("GrinderUtil.getType does not yet know how to determine the type of this sort of expression: " + expression);
}
return result;
}
use of com.sri.ai.expresso.type.TupleType in project aic-expresso by aic-sri-international.
the class Measure method get.
public static Rational get(Expression intensionalSetExpression, Context context) {
Rational result;
if (Sets.isIntensionalSet(intensionalSetExpression)) {
IntensionalSet intensionalSet = (IntensionalSet) intensionalSetExpression;
IndexExpressionsSet indexExpressionsSet = intensionalSet.getIndexExpressions();
List<Expression> indices = IndexExpressions.getIndices(indexExpressionsSet);
if (indices.size() == 1) {
Expression evaluatedResult;
Expression intensionalSetIndex = indices.get(0);
Expression intensionalSetHead = intensionalSet.getHead();
if (!intensionalSetHead.equals(intensionalSetIndex)) {
throw new UnsupportedOperationException("Index and Head must be the same to calculate the meaure of an Intensional : " + intensionalSet);
}
Expression intensionalSetCondition = intensionalSet.getCondition();
Context intensionalSetContext = context.extendWith(indexExpressionsSet);
Type indexType = GrinderUtil.getType(intensionalSetIndex, intensionalSetContext);
if (intensionalSetCondition.equals(false)) {
// short circuit known empty sets up front.
evaluatedResult = Expressions.ZERO;
} else if (indexType instanceof RealExpressoType || indexType instanceof RealInterval) {
// NOTE : For Reals can always assume the condition is of this type.
SingleVariableLinearRealArithmeticConstraint svConstraint = (SingleVariableLinearRealArithmeticConstraint) intensionalSetCondition;
MeasureOfSingleVariableLinearRealArithmeticConstraintStepSolver realSolver = new MeasureOfSingleVariableLinearRealArithmeticConstraintStepSolver(svConstraint);
evaluatedResult = realSolver.solve(intensionalSetContext);
} else if (indexType instanceof FunctionType) {
if (!intensionalSetCondition.equals(true)) {
throw new UnsupportedOperationException("Measure of intensional set with a function type domain currently do not support conditions: " + intensionalSet);
}
// measure(co-domain)^measure(domain)
FunctionType indexFunctionType = (FunctionType) indexType;
Expression condomainIntensionalSet = constructComponentIntensionalSet(indexFunctionType.getCodomain(), intensionalSet, ZERO, intensionalSetContext);
Rational codomainMeasure = get(condomainIntensionalSet, intensionalSetContext);
Rational domainMeasure = Rational.ONE;
for (Type argDomainType : indexFunctionType.getArgumentTypes()) {
Expression argDomainIntensionalSet = constructComponentIntensionalSet(argDomainType, intensionalSet, ZERO, intensionalSetContext);
Rational argMeasure = get(argDomainIntensionalSet, intensionalSetContext);
domainMeasure = domainMeasure.multiply(argMeasure);
}
evaluatedResult = Expressions.makeSymbol(codomainMeasure.pow(domainMeasure.intValueExact()));
} else if (indexType instanceof TupleType) {
if (!intensionalSetCondition.equals(true)) {
throw new UnsupportedOperationException("Measure of intensional set with a tuple type domain currently do not support conditions: " + intensionalSet);
}
// (element_1, ..., element_n) = measure(element_1) * ... * measure(element_n)
TupleType indexTupleType = (TupleType) indexType;
Rational elementMeasuresProduct = Rational.ONE;
for (Type elementType : indexTupleType.getElementTypes()) {
Expression elementDomainIntensionalSet = constructComponentIntensionalSet(elementType, intensionalSet, ZERO, intensionalSetContext);
Rational elementMeasure = get(elementDomainIntensionalSet, intensionalSetContext);
elementMeasuresProduct = elementMeasuresProduct.multiply(elementMeasure);
}
evaluatedResult = Expressions.makeSymbol(elementMeasuresProduct);
} else {
Expression countingFormula = new DefaultCountingFormula(indexExpressionsSet, intensionalSet.getCondition());
evaluatedResult = context.getTheory().evaluate(countingFormula, context);
}
if (Expressions.isNumber(evaluatedResult)) {
result = evaluatedResult.rationalValue();
} else {
throw new UnsupportedOperationException("Unable to compute a finite measure for: " + intensionalSet + ", got : " + evaluatedResult);
}
} else {
throw new UnsupportedOperationException("Currently only support the measure of single indexed intensional sets: " + intensionalSet);
}
} else {
throw new IllegalArgumentException("Not an intensional set: " + intensionalSetExpression);
}
return result;
}
use of com.sri.ai.expresso.type.TupleType in project aic-expresso by aic-sri-international.
the class TupleValuedFreeVariablesSimplifier method constructComponentMap.
private static Map<Expression, List<Pair<Expression, Integer>>> constructComponentMap(Map<Expression, TupleType> freeVariablesOfTupleType, Expression expression, Context context) {
Map<Expression, List<Pair<Expression, Integer>>> result = new LinkedHashMap<>();
for (Map.Entry<Expression, TupleType> freeVariableOfTupleType : freeVariablesOfTupleType.entrySet()) {
Expression freeVariable = freeVariableOfTupleType.getKey();
TupleType freeVariableTupleType = freeVariableOfTupleType.getValue();
List<Pair<Expression, Integer>> components = new ArrayList<>();
int tupleArity = freeVariableTupleType.getArity();
for (int i = 1; i <= tupleArity; i++) {
String proposedComponentVariableName = freeVariable.toString() + i;
Expression componentVariable = Expressions.makeUniqueVariable(proposedComponentVariableName, expression, context);
components.add(new Pair<>(componentVariable, i));
}
result.put(freeVariable, components);
}
return result;
}
use of com.sri.ai.expresso.type.TupleType in project aic-expresso by aic-sri-international.
the class TupleTheoryTestingSupport method makeTuple.
protected Expression makeTuple(TupleType tupleType) {
// Generate elements for the tuple
List<Expression> elements = new ArrayList<>();
for (Type elementType : tupleType.getElementTypes()) {
// If constants supported, use at random
if (elementType.isSampleUniquelyNamedConstantSupported() && getRandom().nextBoolean()) {
elements.add(elementType.sampleUniquelyNamedConstant(getRandom()));
} else {
String elementVariable = pickTestingVariableAtRandom(getElementVariableNamesAndTypesForTesting(), elementType, variableName -> true);
elements.add(parse(elementVariable));
}
}
Expression result = Expressions.makeTuple(elements.toArray(new Expression[elements.size()]));
return result;
}
use of com.sri.ai.expresso.type.TupleType in project aic-expresso by aic-sri-international.
the class TupleTheoryTestingSupport method makeRandomAtomOn.
@Override
public Expression makeRandomAtomOn(String mainVariable, Context context) {
Expression result;
// Construct an instance of the main tuple
Expression mainTuple;
Type mainType = getTestingVariableType(mainVariable);
if (mainType instanceof TupleType) {
mainTuple = makeSymbol(mainVariable);
} else {
TupleType mainTupleType = ensureTupleType(mainType);
mainTuple = makeTuple(mainTupleType);
}
// Pick another (or the same) variable having a compatible tuple type
String otherVariable = pickTestingVariableAtRandom(mainType, variableName -> true);
// Construct an instance of the other tuple
Type otherType = getTestingVariableType(otherVariable);
TupleType otherTupleType = ensureTupleType(otherType);
Expression otherTuple = makeTuple(otherTupleType);
// With it, form an equality or an inequality
if (getRandom().nextBoolean()) {
result = Equality.make(mainTuple, otherTuple);
} else {
result = Disequality.make(mainTuple, otherTuple);
}
return result;
}
Aggregations