Search in sources :

Example 1 with Expressions

use of com.sri.ai.expresso.helper.Expressions in project aic-expresso by aic-sri-international.

the class NumberOfDistinctExpressionsIsLessThanStepSolverTest method test.

@Test
public void test() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new EqualityTheory(true, true));
    Context context = theoryTestingSupport.makeContextWithTestingInformation();
    String contextString = "X != Y and X != a and X != b and Y != b";
    List<String> elementsStrings = list("X", "Y", "a", "b", "c");
    int limit = 5;
    context = context.conjoin(parse(contextString), context);
    ArrayList<Expression> list = mapIntoArrayList(elementsStrings, Expressions::parse);
    NumberOfDistinctExpressionsIsLessThanStepSolver stepSolver = new NumberOfDistinctExpressionsIsLessThanStepSolver(limit, list);
    Step step = stepSolver.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("X = c"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsC = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
    // if X = c, the number of distinct values is at most 4, so it will never reach the limit
    step = stepSolverIfXEqualsC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(TRUE, step.getValue());
    // using again just to make sure it produces the same result
    step = stepSolverIfXEqualsC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(TRUE, step.getValue());
    // if X != c, the number of distinct values will now depend on Y = a
    step = stepSolverIfXIsDifferentFromC.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = a"), step.getSplitter());
    // using again just to make sure it produces the same result
    step = stepSolverIfXIsDifferentFromC.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = a"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYEqualsA = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromA = step.getStepSolverForWhenSplitterIsFalse();
    // ok, moving on, assuming Y = a, limit will not be reached
    step = stepSolverIfXIsDifferentFromCAndYEqualsA.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(TRUE, step.getValue());
    // if however Y != a, limit will depend on Y = c
    step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromA.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = c"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
    // if Y = c, then limit is not going to be reached
    step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(TRUE, step.getValue());
    // if Y != c, then limit is reached
    step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(FALSE, step.getValue());
}
Also used : Context(com.sri.ai.grinder.sgdpllt.api.Context) EqualityTheory(com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory) Expression(com.sri.ai.expresso.api.Expression) TheoryTestingSupport(com.sri.ai.grinder.sgdpllt.tester.TheoryTestingSupport) ExpressionLiteralSplitterStepSolver(com.sri.ai.grinder.sgdpllt.api.ExpressionLiteralSplitterStepSolver) Expressions(com.sri.ai.expresso.helper.Expressions) Step(com.sri.ai.grinder.sgdpllt.api.ExpressionLiteralSplitterStepSolver.Step) NumberOfDistinctExpressionsIsLessThanStepSolver(com.sri.ai.grinder.sgdpllt.theory.equality.NumberOfDistinctExpressionsIsLessThanStepSolver) Test(org.junit.Test)

Example 2 with Expressions

use of com.sri.ai.expresso.helper.Expressions in project aic-expresso by aic-sri-international.

the class Context method extendWith.

/**
	 * Extends context with index expressions, taking into account that new contextual variables may collide with existing ones.
	 * In this case, it renames the incoming variables to unique identifiers and replaces them in the types of remaining
	 * index expressions. It also renames the variables in a given expressions supposed to be in their scope (for example,
	 * the head and condition of an intensionally defined set).
	 * Returns the new context and the index expressions and expression in scope after the renaming.
	 * @param indexExpressions
	 * @param expressionInScope
	 * @return the new context and the index expressions and expression in scope after the renaming
	 */
default default Triple<Context, ExtensionalIndexExpressionsSet, Expression> extendWith(ExtensionalIndexExpressionsSet indexExpressions, Expression expressionInScope) {
    Triple<Context, ExtensionalIndexExpressionsSet, Expression> result;
    if (thereExists(getIndices(indexExpressions), index -> this.containsSymbol(index))) {
        // OPTIMIZATION: only kick in this entire procedure when extending with symbol in the context (previous ones could have been dealt with normally).
        // the objects to be returned in the triple:
        Context newContext = this;
        ArrayList<Expression> newIndexExpressionsList = new ArrayList<>(indexExpressions.getList());
        Expression newExpressionInScope = expressionInScope;
        // Collects all existing symbols to be able to create unique symbols
        Set<Expression> alreadyDefined = Util.set();
        alreadyDefined.addAll(this.getSymbols());
        alreadyDefined.addAll(Expressions.freeSymbols(new DefaultTuple(newIndexExpressionsList), this));
        alreadyDefined.addAll(Expressions.freeSymbols(expressionInScope, this));
        Predicate<Expression> isAlreadyDefined = e -> alreadyDefined.contains(e);
        for (int i = 0; i != newIndexExpressionsList.size(); i++) {
            Expression indexExpression = newIndexExpressionsList.get(i);
            Symbol index = (Symbol) indexExpression.get(0);
            Expression type = indexExpression.get(1);
            PairOf<Expression> newIndexAndNewExpressionInScope = Expressions.standardizeApart(index, isAlreadyDefined, newExpressionInScope);
            Expression newIndex = newIndexAndNewExpressionInScope.first;
            newExpressionInScope = newIndexAndNewExpressionInScope.second;
            // type should not contain the index
            Expression newIndexExpression = apply(IN, newIndex, type);
            newIndexExpressionsList.set(i, newIndexExpression);
            alreadyDefined.add(newIndex);
            for (int j = i + 1; j != newIndexExpressionsList.size(); j++) {
                Expression anotherIndexExpression = newIndexExpressionsList.get(j);
                Expression anotherIndex = anotherIndexExpression.get(0);
                Expression anotherType = anotherIndexExpression.get(1);
                Expression newAnotherType = anotherType.replaceSymbol(index, newIndex, this);
                // anotherIndex is a symbols and does not contain index
                Expression newAnotherIndexExpression = apply(IN, anotherIndex, newAnotherType);
                newIndexExpressionsList.set(j, newAnotherIndexExpression);
            }
        }
        ExtensionalIndexExpressionsSet newIndexExpressions = new ExtensionalIndexExpressionsSet(newIndexExpressionsList);
        newContext = newContext.extendWith(newIndexExpressions);
        result = triple(newContext, newIndexExpressions, newExpressionInScope);
    } else {
        // no collision; usual extension and the expressions do not change.
        result = triple(extendWith(indexExpressions), indexExpressions, expressionInScope);
    }
    return result;
}
Also used : IN(com.sri.ai.grinder.sgdpllt.library.FunctorConstants.IN) Type(com.sri.ai.expresso.api.Type) Triple(com.sri.ai.util.base.Triple) Collection(java.util.Collection) Expressions(com.sri.ai.expresso.helper.Expressions) Set(java.util.Set) PairOf(com.sri.ai.util.base.PairOf) Expression(com.sri.ai.expresso.api.Expression) Triple.triple(com.sri.ai.util.base.Triple.triple) DefaultTuple(com.sri.ai.expresso.core.DefaultTuple) ArrayList(java.util.ArrayList) Beta(com.google.common.annotations.Beta) ExtensionalIndexExpressionsSet(com.sri.ai.expresso.core.ExtensionalIndexExpressionsSet) Symbol(com.sri.ai.expresso.api.Symbol) Expressions.apply(com.sri.ai.expresso.helper.Expressions.apply) Predicate(com.google.common.base.Predicate) Map(java.util.Map) IndexExpressionsSet(com.sri.ai.expresso.api.IndexExpressionsSet) Registry(com.sri.ai.grinder.api.Registry) Util(com.sri.ai.util.Util) IndexExpressions.getIndices(com.sri.ai.grinder.sgdpllt.library.indexexpression.IndexExpressions.getIndices) Util.thereExists(com.sri.ai.util.Util.thereExists) Symbol(com.sri.ai.expresso.api.Symbol) ArrayList(java.util.ArrayList) DefaultTuple(com.sri.ai.expresso.core.DefaultTuple) ExtensionalIndexExpressionsSet(com.sri.ai.expresso.core.ExtensionalIndexExpressionsSet) Expression(com.sri.ai.expresso.api.Expression)

Example 3 with Expressions

use of com.sri.ai.expresso.helper.Expressions in project aic-expresso by aic-sri-international.

the class Context method extendWith.

/**
 * Extends context with index expressions, taking into account that new contextual variables may collide with existing ones.
 * In this case, it renames the incoming variables to unique identifiers and replaces them in the types of remaining
 * index expressions. It also renames these indices if they occur in a given expression --
 * this is useful because the client code (invoking this method)
 * often knows that these renamed indices may occur in a known set of expressions that need to be updated accordingly.
 * Returns the new context, the index expressions and expression in scope after the renaming.
 * @param indexExpressions
 * @param expressionInScope
 * @return the new context and the index expressions and expression in scope after the renaming
 */
default Triple<Context, ExtensionalIndexExpressionsSet, Expression> extendWith(ExtensionalIndexExpressionsSet indexExpressions, Expression expressionInScope) {
    Triple<Context, ExtensionalIndexExpressionsSet, Expression> result;
    if (thereExists(getIndices(indexExpressions), index -> this.containsSymbol(index))) {
        // OPTIMIZATION: only kick in this entire procedure when extending with symbol in the context (previous ones could have been dealt with normally).
        // the objects to be returned in the triple:
        Context newContext = this;
        ArrayList<Expression> newIndexExpressionsList = new ArrayList<>(indexExpressions.getList());
        Expression newExpressionInScope = expressionInScope;
        // Collects all existing symbols to be able to create unique symbols
        Set<Expression> alreadyDefined = Util.set();
        alreadyDefined.addAll(this.getSymbols());
        alreadyDefined.addAll(Expressions.freeSymbols(new DefaultTuple(newIndexExpressionsList), this));
        alreadyDefined.addAll(Expressions.freeSymbols(expressionInScope, this));
        Predicate<Expression> isAlreadyDefined = e -> alreadyDefined.contains(e);
        for (int i = 0; i != newIndexExpressionsList.size(); i++) {
            Expression indexExpression = newIndexExpressionsList.get(i);
            Symbol index = (Symbol) indexExpression.get(0);
            Expression type = indexExpression.get(1);
            PairOf<Expression> newIndexAndNewExpressionInScope = Expressions.standardizeApart(index, isAlreadyDefined, newExpressionInScope);
            Expression newIndex = newIndexAndNewExpressionInScope.first;
            newExpressionInScope = newIndexAndNewExpressionInScope.second;
            // type should not contain the index
            Expression newIndexExpression = apply(IN, newIndex, type);
            newIndexExpressionsList.set(i, newIndexExpression);
            alreadyDefined.add(newIndex);
            for (int j = i + 1; j != newIndexExpressionsList.size(); j++) {
                Expression anotherIndexExpression = newIndexExpressionsList.get(j);
                Expression anotherIndex = anotherIndexExpression.get(0);
                Expression anotherType = anotherIndexExpression.get(1);
                Expression newAnotherType = anotherType.replaceSymbol(index, newIndex, this);
                // anotherIndex is a symbols and does not contain index
                Expression newAnotherIndexExpression = apply(IN, anotherIndex, newAnotherType);
                newIndexExpressionsList.set(j, newAnotherIndexExpression);
            }
        }
        ExtensionalIndexExpressionsSet newIndexExpressions = new ExtensionalIndexExpressionsSet(newIndexExpressionsList);
        newContext = newContext.extendWith(newIndexExpressions);
        result = triple(newContext, newIndexExpressions, newExpressionInScope);
    } else {
        // no collision; usual extension and the expressions do not change.
        result = triple(extendWith(indexExpressions), indexExpressions, expressionInScope);
    }
    return result;
}
Also used : Type(com.sri.ai.expresso.api.Type) Triple(com.sri.ai.util.base.Triple) Collection(java.util.Collection) Expressions(com.sri.ai.expresso.helper.Expressions) Set(java.util.Set) PairOf(com.sri.ai.util.base.PairOf) Expression(com.sri.ai.expresso.api.Expression) Util.mapIntoList(com.sri.ai.util.Util.mapIntoList) Triple.triple(com.sri.ai.util.base.Triple.triple) DefaultTuple(com.sri.ai.expresso.core.DefaultTuple) ArrayList(java.util.ArrayList) Beta(com.google.common.annotations.Beta) List(java.util.List) ExtensionalIndexExpressionsSet(com.sri.ai.expresso.core.ExtensionalIndexExpressionsSet) Symbol(com.sri.ai.expresso.api.Symbol) Expressions.apply(com.sri.ai.expresso.helper.Expressions.apply) IN(com.sri.ai.grinder.library.FunctorConstants.IN) Predicate(com.google.common.base.Predicate) IndexExpressions.getIndices(com.sri.ai.grinder.library.indexexpression.IndexExpressions.getIndices) Map(java.util.Map) IndexExpressionsSet(com.sri.ai.expresso.api.IndexExpressionsSet) Util(com.sri.ai.util.Util) Util.thereExists(com.sri.ai.util.Util.thereExists) Symbol(com.sri.ai.expresso.api.Symbol) ArrayList(java.util.ArrayList) DefaultTuple(com.sri.ai.expresso.core.DefaultTuple) ExtensionalIndexExpressionsSet(com.sri.ai.expresso.core.ExtensionalIndexExpressionsSet) Expression(com.sri.ai.expresso.api.Expression)

Example 4 with Expressions

use of com.sri.ai.expresso.helper.Expressions in project aic-expresso by aic-sri-international.

the class NumberOfDistinctExpressionsIsLessThanStepSolverTest method test.

@Test
public void test() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new EqualityTheory(true, true));
    Context context = theoryTestingSupport.makeContextWithTestingInformation();
    String contextString = "X != Y and X != a and X != b and Y != b";
    List<String> elementsStrings = list("X", "Y", "a", "b", "c");
    int limit = 5;
    context = context.conjoin(parse(contextString), context);
    ArrayList<Expression> list = mapIntoArrayList(elementsStrings, Expressions::parse);
    NumberOfDistinctExpressionsIsLessThanStepSolver stepSolver = new NumberOfDistinctExpressionsIsLessThanStepSolver(limit, list);
    Step step = stepSolver.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("X = c"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsC = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
    // if X = c, the number of distinct values is at most 4, so it will never reach the limit
    step = stepSolverIfXEqualsC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(TRUE, step.getValue());
    // using again just to make sure it produces the same result
    step = stepSolverIfXEqualsC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(TRUE, step.getValue());
    // if X != c, the number of distinct values will now depend on Y = a
    step = stepSolverIfXIsDifferentFromC.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = a"), step.getSplitter());
    // using again just to make sure it produces the same result
    step = stepSolverIfXIsDifferentFromC.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = a"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYEqualsA = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromA = step.getStepSolverForWhenSplitterIsFalse();
    // ok, moving on, assuming Y = a, limit will not be reached
    step = stepSolverIfXIsDifferentFromCAndYEqualsA.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(TRUE, step.getValue());
    // if however Y != a, limit will depend on Y = c
    step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromA.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = c"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
    // if Y = c, then limit is not going to be reached
    step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(TRUE, step.getValue());
    // if Y != c, then limit is reached
    step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(FALSE, step.getValue());
}
Also used : Context(com.sri.ai.grinder.api.Context) EqualityTheory(com.sri.ai.grinder.theory.equality.EqualityTheory) Expression(com.sri.ai.expresso.api.Expression) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) ExpressionLiteralSplitterStepSolver(com.sri.ai.grinder.api.ExpressionLiteralSplitterStepSolver) Expressions(com.sri.ai.expresso.helper.Expressions) Step(com.sri.ai.grinder.api.ExpressionLiteralSplitterStepSolver.Step) NumberOfDistinctExpressionsIsLessThanStepSolver(com.sri.ai.grinder.theory.equality.NumberOfDistinctExpressionsIsLessThanStepSolver) Test(org.junit.Test)

Example 5 with Expressions

use of com.sri.ai.expresso.helper.Expressions in project aic-expresso by aic-sri-international.

the class NumberOfDistinctExpressionsStepSolverTest method test.

@Test
public void test() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new EqualityTheory(true, true));
    Context context = theoryTestingSupport.makeContextWithTestingInformation();
    String contextString = "X != Y and X != a and X != b and Y != b";
    List<String> elementsStrings = list("X", "Y", "a", "b", "c");
    context = context.conjoin(parse(contextString), context);
    ArrayList<Expression> list = mapIntoArrayList(elementsStrings, Expressions::parse);
    NumberOfDistinctExpressionsStepSolver stepSolver = new NumberOfDistinctExpressionsStepSolver(list);
    Step step = stepSolver.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("X = c"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsC = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
    // if X = c, the number of distinct values can be 3 or 4, depending on whether Y = a, or Y = b
    step = stepSolverIfXEqualsC.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = a"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsCAndYEqualsA = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsCAndYIsDifferentFromA = step.getStepSolverForWhenSplitterIsFalse();
    // if X = c and Y = a, the number of distinct values is 3 (a, b, c)
    step = stepSolverIfXEqualsCAndYEqualsA.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(parse("3"), step.getValue());
    // if X = c and Y != a, the number of distinct values is 3 or 4, depending on Y = c
    step = stepSolverIfXEqualsCAndYIsDifferentFromA.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = c"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsCAndYIsDifferentFromAAndYEqualsC = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsCAndYIsDifferentFromAAndYIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
    // if X = c and Y != a and Y = c, the number of distinct values is 3
    step = stepSolverIfXEqualsCAndYIsDifferentFromAAndYEqualsC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(parse("3"), step.getValue());
    // if X = c and Y != a and Y != c, the number of distinct values is 4
    step = stepSolverIfXEqualsCAndYIsDifferentFromAAndYIsDifferentFromC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(parse("4"), step.getValue());
    // if X = c and Y = a, the number of distinct values is 3 (a, b, c)
    step = stepSolverIfXEqualsCAndYEqualsA.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(parse("3"), step.getValue());
    // using again just to make sure it produces the same result
    step = stepSolverIfXEqualsCAndYEqualsA.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(parse("3"), step.getValue());
    // if X != c, the number of distinct value will now depend on Y = a
    step = stepSolverIfXIsDifferentFromC.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = a"), step.getSplitter());
    // using again just to make sure it produces the same result
    step = stepSolverIfXIsDifferentFromC.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = a"), step.getSplitter());
    // if X != c, the number of distinct values can be 4 or 5, depending on whether Y = a, or Y = b
    step = stepSolverIfXIsDifferentFromC.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = a"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYEqualsA = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromA = step.getStepSolverForWhenSplitterIsFalse();
    step = stepSolverIfXIsDifferentFromCAndYEqualsA.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(parse("4"), step.getValue());
    // if however Y != a, limit will depend on Y = c
    step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromA.step(context);
    assertEquals(true, step.itDepends());
    assertEquals(parse("Y = c"), step.getSplitter());
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC = step.getStepSolverForWhenSplitterIsTrue();
    ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
    // if Y = c, then there are 4 distinct values
    step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(parse("4"), step.getValue());
    // if Y != c, then Y is also unique and the number of distinct values is 5
    step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC.step(context);
    assertEquals(false, step.itDepends());
    assertEquals(parse("5"), step.getValue());
}
Also used : Context(com.sri.ai.grinder.api.Context) EqualityTheory(com.sri.ai.grinder.theory.equality.EqualityTheory) Expression(com.sri.ai.expresso.api.Expression) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) ExpressionLiteralSplitterStepSolver(com.sri.ai.grinder.api.ExpressionLiteralSplitterStepSolver) Expressions(com.sri.ai.expresso.helper.Expressions) Step(com.sri.ai.grinder.api.ExpressionLiteralSplitterStepSolver.Step) NumberOfDistinctExpressionsStepSolver(com.sri.ai.grinder.theory.equality.NumberOfDistinctExpressionsStepSolver) Test(org.junit.Test)

Aggregations

Expression (com.sri.ai.expresso.api.Expression)9 Expressions (com.sri.ai.expresso.helper.Expressions)9 Beta (com.google.common.annotations.Beta)5 Predicate (com.google.common.base.Predicate)5 IndexExpressionsSet (com.sri.ai.expresso.api.IndexExpressionsSet)5 Symbol (com.sri.ai.expresso.api.Symbol)5 Type (com.sri.ai.expresso.api.Type)5 ExtensionalIndexExpressionsSet (com.sri.ai.expresso.core.ExtensionalIndexExpressionsSet)5 Expressions.apply (com.sri.ai.expresso.helper.Expressions.apply)5 Util (com.sri.ai.util.Util)5 Registry (com.sri.ai.grinder.api.Registry)4 Function (com.google.common.base.Function)3 CountingFormula (com.sri.ai.expresso.api.CountingFormula)3 FunctionApplication (com.sri.ai.expresso.api.FunctionApplication)3 IntensionalSet (com.sri.ai.expresso.api.IntensionalSet)3 LambdaExpression (com.sri.ai.expresso.api.LambdaExpression)3 QuantifiedExpressionWithABody (com.sri.ai.expresso.api.QuantifiedExpressionWithABody)3 Tuple (com.sri.ai.expresso.api.Tuple)3 EMPTY_TUPLE (com.sri.ai.expresso.api.Tuple.EMPTY_TUPLE)3 AbstractExtensionalSet (com.sri.ai.expresso.core.AbstractExtensionalSet)3