use of com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method compundTest.
@Test
public void compundTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("P = unary_prop(Q)"), step.getSplitter());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(S)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(T)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("S = T"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a and T = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(a)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("binary_eq(S, unary_eq(S))"), parse("binary_eq(unary_eq(T), T)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("S = unary_eq(T)"), step.getSplitter());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(I)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(J)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("I = J"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0 and J = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("binary_dar(I, unary_dar(I))"), parse("binary_dar(unary_dar(J), J)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("I = unary_dar(J)"), step.getSplitter());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("binary_lra(X, unary_lra(X))"), parse("binary_lra(unary_lra(Y), Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = unary_lra(Y)"), step.getSplitter());
}
use of com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory in project aic-expresso by aic-sri-international.
the class CompoundTheoryWithDifferenceArithmeticTest method basicTests.
@Test
public void basicTests() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new PropositionalTheory()));
Expression condition = parse("X = Y and Y = X and P and not Q and P and X = a and X != b");
Context context = theoryTestingSupport.makeContextWithTestingInformation();
Constraint constraint = new CompleteMultiVariableContext(theoryTestingSupport.getTheory(), context);
constraint = constraint.conjoin(condition, context);
Expression expected = parse("(Y = a) and not Q and P and (X = Y)");
assertEquals(expected, constraint);
// nested indices
Expression expression = parse("sum({{(on I in 1..2, J in 2..3) sum({{ (on I in 1..10, J in 1..2) I + J : I != J }}) }})");
context = new TrueContext(theoryTestingSupport.getTheory());
expected = parse("536");
Expression actual = theoryTestingSupport.getTheory().evaluate(expression, context);
println(actual);
assertEquals(expected, actual);
}
use of com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory in project aic-expresso by aic-sri-international.
the class NumberOfDistinctExpressionsIsLessThanStepSolverTest method test.
@Test
public void test() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new EqualityTheory(true, true));
Context context = theoryTestingSupport.makeContextWithTestingInformation();
String contextString = "X != Y and X != a and X != b and Y != b";
List<String> elementsStrings = list("X", "Y", "a", "b", "c");
int limit = 5;
context = context.conjoin(parse(contextString), context);
ArrayList<Expression> list = mapIntoArrayList(elementsStrings, Expressions::parse);
NumberOfDistinctExpressionsIsLessThanStepSolver stepSolver = new NumberOfDistinctExpressionsIsLessThanStepSolver(limit, list);
Step step = stepSolver.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("X = c"), step.getSplitter());
ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsC = step.getStepSolverForWhenSplitterIsTrue();
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
// if X = c, the number of distinct values is at most 4, so it will never reach the limit
step = stepSolverIfXEqualsC.step(context);
assertEquals(false, step.itDepends());
assertEquals(TRUE, step.getValue());
// using again just to make sure it produces the same result
step = stepSolverIfXEqualsC.step(context);
assertEquals(false, step.itDepends());
assertEquals(TRUE, step.getValue());
// if X != c, the number of distinct values will now depend on Y = a
step = stepSolverIfXIsDifferentFromC.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("Y = a"), step.getSplitter());
// using again just to make sure it produces the same result
step = stepSolverIfXIsDifferentFromC.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("Y = a"), step.getSplitter());
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYEqualsA = step.getStepSolverForWhenSplitterIsTrue();
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromA = step.getStepSolverForWhenSplitterIsFalse();
// ok, moving on, assuming Y = a, limit will not be reached
step = stepSolverIfXIsDifferentFromCAndYEqualsA.step(context);
assertEquals(false, step.itDepends());
assertEquals(TRUE, step.getValue());
// if however Y != a, limit will depend on Y = c
step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromA.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("Y = c"), step.getSplitter());
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC = step.getStepSolverForWhenSplitterIsTrue();
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
// if Y = c, then limit is not going to be reached
step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC.step(context);
assertEquals(false, step.itDepends());
assertEquals(TRUE, step.getValue());
// if Y != c, then limit is reached
step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC.step(context);
assertEquals(false, step.itDepends());
assertEquals(FALSE, step.getValue());
}
use of com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method equalityTest.
@Test
public void equalityTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new EqualityTheory(true, true));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_CATEGORICAL_TYPE, "Y", TESTING_CATEGORICAL_TYPE, "Z", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_eq(X)"), parse("unary_eq(X)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(X)"), parse("unary_eq(Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = a and Y = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(X)"), parse("unary_eq(a)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("binary_eq(X, unary_eq(X))"), parse("binary_eq(unary_eq(Y), Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = unary_eq(Y)"), step.getSplitter());
}
use of com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method advancedEqualityTest.
@Ignore("TODO - context implementation currently does not support these more advanced/indirect comparisons")
@Test
public void advancedEqualityTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new EqualityTheory(false, true));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_CATEGORICAL_TYPE, "Y", TESTING_CATEGORICAL_TYPE, "Z", TESTING_CATEGORICAL_TYPE, "unary_eq/1", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq/2", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("binary_eq(X, unary_eq(X))"), parse("binary_eq(unary_eq(Y), Y)"));
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = b and Y = a and unary_eq(Y) = b and unary_eq(X) = a"), rootContext);
StepSolver.Step<Boolean> step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = a and Y = a and unary_eq(Y) = b and unary_eq(X) = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = b and Y = a and unary_eq(a) = b and unary_eq(b) = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
}
Aggregations