Search in sources :

Example 1 with UnificationStepSolver

use of com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.

the class UnificationStepSolverTest method propositionalTest.

@Test
public void propositionalTest() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new PropositionalTheory());
    // NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
    theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop/1", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop/2", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE)));
    Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
    UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
    StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("P = unary_prop(Q)"), step.getSplitter());
    // Ignore: PropositionalTheory will only deal with symbol variables for now
    //		localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
    //		step = unificationStepSolver.step(localTestContext);
    //		Assert.assertEquals(false,  step.itDepends());
    //		Assert.assertEquals(true, step.getValue());
    //		localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
    //		step = unificationStepSolver.step(localTestContext);
    //		Assert.assertEquals(false,  step.itDepends());
    //		Assert.assertEquals(false, step.getValue());
    // Now test out individual branches
    unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(parse("P = unary_prop(Q)"), step.getSplitter());
    StepSolver<Boolean> falseItDependsSolver = step.getStepSolverForWhenSplitterIsFalse();
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
    StepSolver<Boolean> trueItDependsSolver = step.getStepSolverForWhenSplitterIsTrue();
    localTestContext = rootContext.conjoin(parse("P"), rootContext);
    step = trueItDependsSolver.step(localTestContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(parse("P = unary_prop(Q)"), step.getSplitter());
    falseItDependsSolver = step.getStepSolverForWhenSplitterIsFalse();
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
    // Ignore: PropositionalTheory will only deal with symbol variables for now
    //		localTestContext = localTestContext.conjoin(parse("unary_prop(Q)"), localTestContext);
    //		step = trueItDependsSolver.step(localTestContext);
    //		Assert.assertEquals(true,  step.itDepends());
    //		Assert.assertEquals(parse("unary_prop(P) = Q"), step.getSplitter());
    falseItDependsSolver = step.getStepSolverForWhenSplitterIsFalse();
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
    // Ignore: PropositionalTheory will only deal with symbol variables for now
    //		localTestContext = localTestContext.conjoin(parse("unary_prop(P)"), localTestContext);
    //		step = trueItDependsSolver.step(localTestContext);
    //		Assert.assertEquals(true,  step.itDepends());
    //		Assert.assertEquals(parse("unary_prop(P) = Q"), step.getSplitter());
    falseItDependsSolver = step.getStepSolverForWhenSplitterIsFalse();
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
// Ignore: PropositionalTheory will only deal with symbol variables for now
//		localTestContext = localTestContext.conjoin(parse("Q"), localTestContext);
//		step = trueItDependsSolver.step(localTestContext);
//		Assert.assertEquals(false,  step.itDepends());
//		Assert.assertEquals(true, step.getValue());
}
Also used : Context(com.sri.ai.grinder.sgdpllt.api.Context) TheoryTestingSupport(com.sri.ai.grinder.sgdpllt.tester.TheoryTestingSupport) FunctionType(com.sri.ai.expresso.type.FunctionType) PropositionalTheory(com.sri.ai.grinder.sgdpllt.theory.propositional.PropositionalTheory) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) StepSolver(com.sri.ai.grinder.sgdpllt.api.StepSolver) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) Test(org.junit.Test)

Example 2 with UnificationStepSolver

use of com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.

the class UnificationStepSolverTest method compundTest.

@Test
public void compundTest() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
    // NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
    theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
    Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
    UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
    StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("P = unary_prop(Q)"), step.getSplitter());
    //
    //
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(S)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(T)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("S = T"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a and T = b"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(a)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = b"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("binary_eq(S, unary_eq(S))"), parse("binary_eq(unary_eq(T), T)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("S = unary_eq(T)"), step.getSplitter());
    //
    //
    unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(I)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(J)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("I = J"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0 and J = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(0)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("binary_dar(I, unary_dar(I))"), parse("binary_dar(unary_dar(J), J)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("I = unary_dar(J)"), step.getSplitter());
    //
    //
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("binary_lra(X, unary_lra(X))"), parse("binary_lra(unary_lra(Y), Y)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("X = unary_lra(Y)"), step.getSplitter());
}
Also used : Context(com.sri.ai.grinder.sgdpllt.api.Context) EqualityTheory(com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory) TheoryTestingSupport(com.sri.ai.grinder.sgdpllt.tester.TheoryTestingSupport) DifferenceArithmeticTheory(com.sri.ai.grinder.sgdpllt.theory.differencearithmetic.DifferenceArithmeticTheory) FunctionType(com.sri.ai.expresso.type.FunctionType) LinearRealArithmeticTheory(com.sri.ai.grinder.sgdpllt.theory.linearrealarithmetic.LinearRealArithmeticTheory) PropositionalTheory(com.sri.ai.grinder.sgdpllt.theory.propositional.PropositionalTheory) CompoundTheory(com.sri.ai.grinder.sgdpllt.theory.compound.CompoundTheory) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) StepSolver(com.sri.ai.grinder.sgdpllt.api.StepSolver) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) Test(org.junit.Test)

Example 3 with UnificationStepSolver

use of com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.

the class UnificationStepSolverTest method linearRealArithmeticTest.

@Test
public void linearRealArithmeticTest() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new LinearRealArithmeticTheory(true, true));
    // NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
    theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
    Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
    UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
    StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("binary_lra(X, unary_lra(X))"), parse("binary_lra(unary_lra(Y), Y)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("X = unary_lra(Y)"), step.getSplitter());
}
Also used : Context(com.sri.ai.grinder.sgdpllt.api.Context) TheoryTestingSupport(com.sri.ai.grinder.sgdpllt.tester.TheoryTestingSupport) FunctionType(com.sri.ai.expresso.type.FunctionType) LinearRealArithmeticTheory(com.sri.ai.grinder.sgdpllt.theory.linearrealarithmetic.LinearRealArithmeticTheory) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) StepSolver(com.sri.ai.grinder.sgdpllt.api.StepSolver) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) Test(org.junit.Test)

Example 4 with UnificationStepSolver

use of com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.

the class UnificationStepSolverTest method equalityTest.

@Test
public void equalityTest() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new EqualityTheory(true, true));
    // NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
    theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_CATEGORICAL_TYPE, "Y", TESTING_CATEGORICAL_TYPE, "Z", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE)));
    Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
    UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_eq(X)"), parse("unary_eq(X)"));
    StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(X)"), parse("unary_eq(Y)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = a and Y = b"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(X)"), parse("unary_eq(a)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = a"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = b"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("binary_eq(X, unary_eq(X))"), parse("binary_eq(unary_eq(Y), Y)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("X = unary_eq(Y)"), step.getSplitter());
}
Also used : Context(com.sri.ai.grinder.sgdpllt.api.Context) EqualityTheory(com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory) TheoryTestingSupport(com.sri.ai.grinder.sgdpllt.tester.TheoryTestingSupport) FunctionType(com.sri.ai.expresso.type.FunctionType) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) StepSolver(com.sri.ai.grinder.sgdpllt.api.StepSolver) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) Test(org.junit.Test)

Example 5 with UnificationStepSolver

use of com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.

the class UnificationStepSolverTest method advancedEqualityTest.

@Ignore("TODO - context implementation currently does not support these more advanced/indirect comparisons")
@Test
public void advancedEqualityTest() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new EqualityTheory(false, true));
    // NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
    theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_CATEGORICAL_TYPE, "Y", TESTING_CATEGORICAL_TYPE, "Z", TESTING_CATEGORICAL_TYPE, "unary_eq/1", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq/2", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE)));
    Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
    UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("binary_eq(X, unary_eq(X))"), parse("binary_eq(unary_eq(Y), Y)"));
    Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = b and Y = a and unary_eq(Y) = b and unary_eq(X) = a"), rootContext);
    StepSolver.Step<Boolean> step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = a and Y = a and unary_eq(Y) = b and unary_eq(X) = a"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = b and Y = a and unary_eq(a) = b and unary_eq(b) = a"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
}
Also used : Context(com.sri.ai.grinder.sgdpllt.api.Context) EqualityTheory(com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory) TheoryTestingSupport(com.sri.ai.grinder.sgdpllt.tester.TheoryTestingSupport) FunctionType(com.sri.ai.expresso.type.FunctionType) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) StepSolver(com.sri.ai.grinder.sgdpllt.api.StepSolver) UnificationStepSolver(com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver) Ignore(org.junit.Ignore) Test(org.junit.Test)

Aggregations

FunctionType (com.sri.ai.expresso.type.FunctionType)10 Context (com.sri.ai.grinder.sgdpllt.api.Context)10 StepSolver (com.sri.ai.grinder.sgdpllt.api.StepSolver)10 TheoryTestingSupport (com.sri.ai.grinder.sgdpllt.tester.TheoryTestingSupport)10 UnificationStepSolver (com.sri.ai.grinder.sgdpllt.theory.base.UnificationStepSolver)10 Test (org.junit.Test)10 Ignore (org.junit.Ignore)5 DifferenceArithmeticTheory (com.sri.ai.grinder.sgdpllt.theory.differencearithmetic.DifferenceArithmeticTheory)4 EqualityTheory (com.sri.ai.grinder.sgdpllt.theory.equality.EqualityTheory)4 LinearRealArithmeticTheory (com.sri.ai.grinder.sgdpllt.theory.linearrealarithmetic.LinearRealArithmeticTheory)4 PropositionalTheory (com.sri.ai.grinder.sgdpllt.theory.propositional.PropositionalTheory)4 CompoundTheory (com.sri.ai.grinder.sgdpllt.theory.compound.CompoundTheory)2