use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class NumberOfDistinctExpressionsStepSolverTest method test.
@Test
public void test() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new EqualityTheory(true, true));
Context context = theoryTestingSupport.makeContextWithTestingInformation();
String contextString = "X != Y and X != a and X != b and Y != b";
List<String> elementsStrings = list("X", "Y", "a", "b", "c");
context = context.conjoin(parse(contextString), context);
ArrayList<Expression> list = mapIntoArrayList(elementsStrings, Expressions::parse);
NumberOfDistinctExpressionsStepSolver stepSolver = new NumberOfDistinctExpressionsStepSolver(list);
Step step = stepSolver.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("X = c"), step.getSplitter());
ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsC = step.getStepSolverForWhenSplitterIsTrue();
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
// if X = c, the number of distinct values can be 3 or 4, depending on whether Y = a, or Y = b
step = stepSolverIfXEqualsC.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("Y = a"), step.getSplitter());
ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsCAndYEqualsA = step.getStepSolverForWhenSplitterIsTrue();
ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsCAndYIsDifferentFromA = step.getStepSolverForWhenSplitterIsFalse();
// if X = c and Y = a, the number of distinct values is 3 (a, b, c)
step = stepSolverIfXEqualsCAndYEqualsA.step(context);
assertEquals(false, step.itDepends());
assertEquals(parse("3"), step.getValue());
// if X = c and Y != a, the number of distinct values is 3 or 4, depending on Y = c
step = stepSolverIfXEqualsCAndYIsDifferentFromA.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("Y = c"), step.getSplitter());
ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsCAndYIsDifferentFromAAndYEqualsC = step.getStepSolverForWhenSplitterIsTrue();
ExpressionLiteralSplitterStepSolver stepSolverIfXEqualsCAndYIsDifferentFromAAndYIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
// if X = c and Y != a and Y = c, the number of distinct values is 3
step = stepSolverIfXEqualsCAndYIsDifferentFromAAndYEqualsC.step(context);
assertEquals(false, step.itDepends());
assertEquals(parse("3"), step.getValue());
// if X = c and Y != a and Y != c, the number of distinct values is 4
step = stepSolverIfXEqualsCAndYIsDifferentFromAAndYIsDifferentFromC.step(context);
assertEquals(false, step.itDepends());
assertEquals(parse("4"), step.getValue());
// if X = c and Y = a, the number of distinct values is 3 (a, b, c)
step = stepSolverIfXEqualsCAndYEqualsA.step(context);
assertEquals(false, step.itDepends());
assertEquals(parse("3"), step.getValue());
// using again just to make sure it produces the same result
step = stepSolverIfXEqualsCAndYEqualsA.step(context);
assertEquals(false, step.itDepends());
assertEquals(parse("3"), step.getValue());
// if X != c, the number of distinct value will now depend on Y = a
step = stepSolverIfXIsDifferentFromC.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("Y = a"), step.getSplitter());
// using again just to make sure it produces the same result
step = stepSolverIfXIsDifferentFromC.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("Y = a"), step.getSplitter());
// if X != c, the number of distinct values can be 4 or 5, depending on whether Y = a, or Y = b
step = stepSolverIfXIsDifferentFromC.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("Y = a"), step.getSplitter());
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYEqualsA = step.getStepSolverForWhenSplitterIsTrue();
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromA = step.getStepSolverForWhenSplitterIsFalse();
step = stepSolverIfXIsDifferentFromCAndYEqualsA.step(context);
assertEquals(false, step.itDepends());
assertEquals(parse("4"), step.getValue());
// if however Y != a, limit will depend on Y = c
step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromA.step(context);
assertEquals(true, step.itDepends());
assertEquals(parse("Y = c"), step.getSplitter());
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC = step.getStepSolverForWhenSplitterIsTrue();
ExpressionLiteralSplitterStepSolver stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC = step.getStepSolverForWhenSplitterIsFalse();
// if Y = c, then there are 4 distinct values
step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsEqualToC.step(context);
assertEquals(false, step.itDepends());
assertEquals(parse("4"), step.getValue());
// if Y != c, then Y is also unique and the number of distinct values is 5
step = stepSolverIfXIsDifferentFromCAndYIsDifferentFromAAndYIsDifferentFromC.step(context);
assertEquals(false, step.itDepends());
assertEquals(parse("5"), step.getValue());
}
use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method linearRealArithmeticTest.
@Test
public void linearRealArithmeticTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new LinearRealArithmeticTheory(true, true));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
}
use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method advancedCompositeTest.
@Ignore("TODO - context implementation currently does not support these more advanced/indirect comparisons")
@Test
public void advancedCompositeTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop/1", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop/2", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq/1", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq/2", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar/1", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar/2", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra/1", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra/2", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
StepSolver.Step<Boolean> step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
}
use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method advancedPropositionalTest.
@Ignore("TODO - context implementation currently does not support these more advanced/indirect comparisons")
@Test
public void advancedPropositionalTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new PropositionalTheory());
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop/1", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop/2", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P and Q and not unary_prop(true) and unary_prop(false)"), rootContext);
StepSolver.Step<Boolean> step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
}
use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method advancedLinearRealArithmeticTest.
@Ignore("TODO - context implementation currently does not support these more advanced/indirect comparisons")
@Test
public void advancedLinearRealArithmeticTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new LinearRealArithmeticTheory(true, true));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra/1", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra/2", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("binary_lra(X, unary_lra(X))"), parse("binary_lra(unary_lra(Y), Y)"));
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1 and unary_lra(Y) = 0 and unary_lra(X) = 1"), rootContext);
StepSolver.Step<Boolean> step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1 and Y = 1 and unary_lra(Y) = 0 and unary_lra(X) = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1 and unary_lra(1) = 0 and unary_lra(0) = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
}
Aggregations