use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class ExpressionStepSolverToLiteralSplitterStepSolverAdapterTest method testLinearRealArithmeticTheoryWithRandomDisjunctiveFormulas.
@Ignore("Random generation of linear real arithmetic not yet implemented")
@Test
public void testLinearRealArithmeticTheoryWithRandomDisjunctiveFormulas() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new LinearRealArithmeticTheory(true, true));
extendTestingVariables("X", theoryTestingSupport, "S", "T", "U", "V", "W");
runRandomDisjunctiveFormulasTest(theoryTestingSupport);
}
use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class SampleCommonInterpreterTest method setUp.
@Before
public void setUp() {
// Make tests repeatable
random = new Random(1);
context = new TrueContext(new CompoundTheory(new DifferenceArithmeticTheory(false, false), new LinearRealArithmeticTheory(false, false), new EqualityTheory(false, false), new PropositionalTheory()));
}
use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class BoundsTest method declareTheoryContextAndSetOfFactors.
private void declareTheoryContextAndSetOfFactors() {
/* That's how we create a empty bound
* It is useful for abstracting the kind of bound we are talking about:
* if you say to a program that one of his attributes is a bound, you can let the user choose
* between a extensional or intensional representation just by passing the right object as
* argument.
*
* Example:
*
* class foo{
* Bound b
* ...
* public foo(Bound b, ...) {
* this.b = b;
* ...
* }
* }
*
* Use:
* foo object = new foo(new DefaultExtensionalBound(),...);
*
* */
ExpressoConfiguration.setDisplayNumericsExactlyForSymbols(true);
extensionalBound = new DefaultExtensionalBound();
intensionalBound = new DefaultIntensionalBound();
theory = new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, false), new LinearRealArithmeticTheory(false, false), new TupleTheory(), new PropositionalTheory());
context = new TrueContext(theory);
context = context.extendWithSymbolsAndTypes("X", "Boolean");
context = context.extendWithSymbolsAndTypes("Y", "Boolean");
context = context.extendWithSymbolsAndTypes("A", "Boolean");
context = context.extendWithSymbolsAndTypes("B", "Boolean");
context = context.extendWithSymbolsAndTypes("C", "1..5");
// context = context.extendWithSymbolsAndTypes("D","{1,3,4,8}");
// Set of functions
Expression phi1 = parse("if X = true then 1 else if Y = true then 2 else 3");
Expression phi2 = parse("if A = true then if Y = true then 4 else 5 else 6");
Expression phi3 = parse("if X = true then 7 else if B = true then 8 else 9");
Expression phi4 = parse("if B = true then 10 else if A = true then 11 else 12");
Expression phi5 = parse("if C < 4 then 10 else if C = 4 then 11 else 12");
/*
* This is how we create a non empty extensional bound
*/
setOfFactors = new DefaultExtensionalBound(arrayList(phi1, phi2, phi3, phi4, phi5));
// Set of numbers
setOFNumbers = new DefaultExtensionalBound(arrayList(ONE, TWO));
Set<Expression> Factor = new HashSet<Expression>();
model = new Model(Factor);
model.context = model.context.extendWithSymbolsAndTypes("A", "Boolean");
model.context = model.context.extendWithSymbolsAndTypes("B", "Boolean");
model.context = model.context.extendWithSymbolsAndTypes("Q", "Boolean");
model.context = model.context.extendWithSymbolsAndTypes("C", "1..4");
model.context = model.context.extendWithSymbolsAndTypes("D", "6..9");
intensionalSetOfFactors1 = new DefaultIntensionalBound(arrayList(parse("A' in Boolean"), parse("C' in 1..5")), parse("if C = C' then if A = A' then 1 else 4 else 0"), TRUE);
intensionalSetOfFactors2 = DefaultIntensionalBound.simplex(arrayList(parse("A")), model);
intensionalSetOfFactors3 = DefaultIntensionalBound.simplex(arrayList(parse("C"), parse("B")), model);
}
use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method linearRealArithmeticTest.
@Test
public void linearRealArithmeticTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new LinearRealArithmeticTheory(true, true));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
}
use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method advancedCompositeTest.
@Ignore("TODO - context implementation currently does not support these more advanced/indirect comparisons")
@Test
public void advancedCompositeTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop/1", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop/2", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq/1", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq/2", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar/1", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar/2", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra/1", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra/2", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
StepSolver.Step<Boolean> step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
}
Aggregations