Search in sources :

Example 16 with LinearRealArithmeticTheory

use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.

the class LinearRealArithmeticTheoryTest method testSummation.

@Test
public void testSummation() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new LinearRealArithmeticTheory(true, true));
    Context context = theoryTestingSupport.makeContextWithTestingInformation();
    Simplifier simplifier = (e, c) -> theoryTestingSupport.getTheory().simplify(e, c);
    Expression variable;
    String constraintString;
    String bodyString;
    Expression expected;
    variable = parse("X");
    constraintString = "true";
    bodyString = "1";
    expected = parse("4");
    runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
    variable = parse("X");
    constraintString = "X < 3 and X != 2";
    bodyString = "1";
    expected = parse("3");
    runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
    variable = parse("X");
    constraintString = "X < Y and X != 2";
    bodyString = "1";
    expected = parse("if Y > 0 then Y else 0");
    runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
    variable = parse("X");
    constraintString = "X < 3 and X != 2";
    bodyString = "Y";
    expected = parse("3*Y");
    runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
    variable = parse("X");
    constraintString = "X < 3 and X != 2";
    bodyString = "X";
    expected = parse("4.5");
    runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
    variable = parse("X");
    constraintString = "X < 3 and X != 2 and X = 2";
    bodyString = "Y";
    expected = parse("0");
    runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
    variable = parse("X");
    constraintString = "X < Y and X != 2";
    bodyString = "X";
    expected = parse("if Y > 0 then 0.5*Y^2 else 0");
    runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
    variable = parse("X");
    constraintString = "X < Y and X != 2";
    bodyString = "Y";
    expected = parse("if Y > 0 then Y^2 else 0");
    runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
    variable = parse("X");
    constraintString = "X < Y and X != 2";
    bodyString = "X + Y";
    expected = parse("if Y > 0 then 1.5*Y^2 else 0");
    runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
// variable = parse("X");
// constraintString = "X < Y and X != 2";
// bodyString = "X^2 + Y";
// expected = parse("if Y > 0 then 0.333333333*Y^3 + Y^2 else 0");
// runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
}
Also used : Context(com.sri.ai.grinder.api.Context) BinaryFunction(com.sri.ai.util.base.BinaryFunction) Function(com.google.common.base.Function) DefaultSingleQuantifierEliminationProblem(com.sri.ai.grinder.core.solver.DefaultSingleQuantifierEliminationProblem) SatisfiabilityOfSingleVariableLinearRealArithmeticConstraintStepSolver(com.sri.ai.grinder.theory.linearrealarithmetic.SatisfiabilityOfSingleVariableLinearRealArithmeticConstraintStepSolver) SingleVariableLinearRealArithmeticConstraint(com.sri.ai.grinder.theory.linearrealarithmetic.SingleVariableLinearRealArithmeticConstraint) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) Random(java.util.Random) Test(org.junit.Test) Expression(com.sri.ai.expresso.api.Expression) Beta(com.google.common.annotations.Beta) LinearRealArithmeticTheory(com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory) SummationOnLinearRealArithmeticAndPolynomialStepSolver(com.sri.ai.grinder.theory.linearrealarithmetic.SummationOnLinearRealArithmeticAndPolynomialStepSolver) Expressions.parse(com.sri.ai.expresso.helper.Expressions.parse) ExpressionStepSolver(com.sri.ai.grinder.api.ExpressionStepSolver) Sum(com.sri.ai.grinder.group.Sum) SingleVariableConstraint(com.sri.ai.grinder.api.SingleVariableConstraint) Simplifier(com.sri.ai.grinder.rewriter.api.Simplifier) Context(com.sri.ai.grinder.api.Context) IntervalWithMeasureEquivalentToSingleVariableLinearRealArithmeticConstraintStepSolver(com.sri.ai.grinder.theory.linearrealarithmetic.IntervalWithMeasureEquivalentToSingleVariableLinearRealArithmeticConstraintStepSolver) Assert.assertEquals(org.junit.Assert.assertEquals) MeasureOfSingleVariableLinearRealArithmeticConstraintStepSolver(com.sri.ai.grinder.theory.linearrealarithmetic.MeasureOfSingleVariableLinearRealArithmeticConstraintStepSolver) Expression(com.sri.ai.expresso.api.Expression) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) LinearRealArithmeticTheory(com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory) Simplifier(com.sri.ai.grinder.rewriter.api.Simplifier) Test(org.junit.Test)

Example 17 with LinearRealArithmeticTheory

use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.

the class LinearRealArithmeticTheoryTest method testSatisfiability.

@Test
public void testSatisfiability() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new LinearRealArithmeticTheory(true, true));
    Context context = theoryTestingSupport.makeContextWithTestingInformation();
    Expression variable;
    String constraintString;
    Expression expected;
    variable = parse("X");
    constraintString = "true";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X < 3";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X > 3 and X <= 3";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X > 3.1 and X <= 3.4";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X > 3 and X < 4";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X > 3.1 and X <= 3.4 and X != 3.2";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 3.2";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 3.2 and X = 3.2";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X = 3.2";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 7";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 7";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X = 7";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 8";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 7 and X = 8";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X = 7 and X = 8";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X < Y";
    expected = parse("Y > 0");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    // keep these tests together
    variable = parse("X");
    constraintString = "X < Y + 1";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X < Y - 4";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X < 2 - Y";
    expected = parse("Y < 2");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X > Y";
    expected = parse("Y < 4");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    // keep these tests together
    variable = parse("X");
    constraintString = "X > Y + 1";
    expected = parse("Y < 3");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X >= Y + 4";
    expected = parse("Y <= 0");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X >= Y + 2";
    expected = parse("Y <= 2");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X >= Y";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    // keep these tests together
    variable = parse("X");
    constraintString = "X >= Y + 1";
    expected = parse("Y <= 3");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X > 3 and X <= 3";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X > 3.1 and X <= 3.4";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X > 3.1 and X <= 3.4 and X != 3.2";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 3.2";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 3.2 and X = 3.2";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X = 3.2";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X = 3.6";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 7";
    expected = parse("true");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 7";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X = 7";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 8";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 7 and X = 8";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > 3.1 and X = 7 and X = 8";
    expected = parse("false");
    runSatisfiabilityTest(variable, constraintString, expected, context);
    variable = parse("X");
    constraintString = "X <= 3.4 and X > Z and X >= Y";
    expected = parse("if Z < Y then Y <= 3.4 else Z < 3.4");
    runSatisfiabilityTest(variable, constraintString, expected, context);
}
Also used : Context(com.sri.ai.grinder.api.Context) Expression(com.sri.ai.expresso.api.Expression) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) LinearRealArithmeticTheory(com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory) Test(org.junit.Test)

Example 18 with LinearRealArithmeticTheory

use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.

the class UnificationStepSolverTest method compoundTest.

@Test
public void compoundTest() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
    // NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
    theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
    Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
    UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
    StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    // 
    // 
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(S)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(T)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("S = T"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a and T = b"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(a)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = b"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    // 
    // 
    unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(I)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(J)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("I = J"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0 and J = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(0)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    // 
    // 
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
}
Also used : Context(com.sri.ai.grinder.api.Context) EqualityTheory(com.sri.ai.grinder.theory.equality.EqualityTheory) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) DifferenceArithmeticTheory(com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory) FunctionType(com.sri.ai.expresso.type.FunctionType) LinearRealArithmeticTheory(com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory) PropositionalTheory(com.sri.ai.grinder.theory.propositional.PropositionalTheory) CompoundTheory(com.sri.ai.grinder.theory.compound.CompoundTheory) StepSolver(com.sri.ai.grinder.api.StepSolver) UnificationStepSolver(com.sri.ai.grinder.theory.base.UnificationStepSolver) UnificationStepSolver(com.sri.ai.grinder.theory.base.UnificationStepSolver) Test(org.junit.Test)

Example 19 with LinearRealArithmeticTheory

use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.

the class SymbolicShell method makeTheory.

private static Theory makeTheory() {
    Theory theory = new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, false), new LinearRealArithmeticTheory(false, false), new TupleTheory(), new PropositionalTheory(), new BruteForceFunctionTheory());
    theory = new BruteForceFallbackTheory(theory);
    return theory;
}
Also used : BruteForceFallbackTheory(com.sri.ai.grinder.theory.bruteforce.BruteForceFallbackTheory) EqualityTheory(com.sri.ai.grinder.theory.equality.EqualityTheory) BruteForceFunctionTheory(com.sri.ai.grinder.theory.function.BruteForceFunctionTheory) PropositionalTheory(com.sri.ai.grinder.theory.propositional.PropositionalTheory) BruteForceFallbackTheory(com.sri.ai.grinder.theory.bruteforce.BruteForceFallbackTheory) BruteForceFunctionTheory(com.sri.ai.grinder.theory.function.BruteForceFunctionTheory) EqualityTheory(com.sri.ai.grinder.theory.equality.EqualityTheory) LinearRealArithmeticTheory(com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory) Theory(com.sri.ai.grinder.api.Theory) DifferenceArithmeticTheory(com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory) CompoundTheory(com.sri.ai.grinder.theory.compound.CompoundTheory) TupleTheory(com.sri.ai.grinder.theory.tuple.TupleTheory) DifferenceArithmeticTheory(com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory) LinearRealArithmeticTheory(com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory) PropositionalTheory(com.sri.ai.grinder.theory.propositional.PropositionalTheory) CompoundTheory(com.sri.ai.grinder.theory.compound.CompoundTheory) TupleTheory(com.sri.ai.grinder.theory.tuple.TupleTheory)

Example 20 with LinearRealArithmeticTheory

use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.

the class AssignmentsSamplingIteratorTest method setUp.

@Before
public void setUp() {
    // Make tests repeatable
    random = new Random(1);
    conditionRewriter = new Recursive(new Exhaustive(new BruteForceCommonInterpreter()));
    context = new TrueContext(new CompoundTheory(new DifferenceArithmeticTheory(false, false), new LinearRealArithmeticTheory(false, false), new EqualityTheory(false, false), new PropositionalTheory()));
}
Also used : BruteForceCommonInterpreter(com.sri.ai.grinder.interpreter.BruteForceCommonInterpreter) EqualityTheory(com.sri.ai.grinder.theory.equality.EqualityTheory) Random(java.util.Random) Exhaustive(com.sri.ai.grinder.rewriter.core.Exhaustive) DifferenceArithmeticTheory(com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory) LinearRealArithmeticTheory(com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory) PropositionalTheory(com.sri.ai.grinder.theory.propositional.PropositionalTheory) Recursive(com.sri.ai.grinder.rewriter.core.Recursive) CompoundTheory(com.sri.ai.grinder.theory.compound.CompoundTheory) TrueContext(com.sri.ai.grinder.core.TrueContext) Before(org.junit.Before)

Aggregations

LinearRealArithmeticTheory (com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory)21 Context (com.sri.ai.grinder.api.Context)13 DifferenceArithmeticTheory (com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory)13 CompoundTheory (com.sri.ai.grinder.theory.compound.CompoundTheory)12 EqualityTheory (com.sri.ai.grinder.theory.equality.EqualityTheory)12 PropositionalTheory (com.sri.ai.grinder.theory.propositional.PropositionalTheory)12 Expression (com.sri.ai.expresso.api.Expression)9 TrueContext (com.sri.ai.grinder.core.TrueContext)9 TheoryTestingSupport (com.sri.ai.grinder.tester.TheoryTestingSupport)9 Test (org.junit.Test)9 TupleTheory (com.sri.ai.grinder.theory.tuple.TupleTheory)8 FunctionType (com.sri.ai.expresso.type.FunctionType)5 Theory (com.sri.ai.grinder.api.Theory)5 StepSolver (com.sri.ai.grinder.api.StepSolver)4 UnificationStepSolver (com.sri.ai.grinder.theory.base.UnificationStepSolver)4 Random (java.util.Random)3 Ignore (org.junit.Ignore)3 IndexExpressionsSet (com.sri.ai.expresso.api.IndexExpressionsSet)2 Type (com.sri.ai.expresso.api.Type)2 ExtensionalIndexExpressionsSet (com.sri.ai.expresso.core.ExtensionalIndexExpressionsSet)2