use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class LinearRealArithmeticTheoryTest method testSummation.
@Test
public void testSummation() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new LinearRealArithmeticTheory(true, true));
Context context = theoryTestingSupport.makeContextWithTestingInformation();
Simplifier simplifier = (e, c) -> theoryTestingSupport.getTheory().simplify(e, c);
Expression variable;
String constraintString;
String bodyString;
Expression expected;
variable = parse("X");
constraintString = "true";
bodyString = "1";
expected = parse("4");
runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
variable = parse("X");
constraintString = "X < 3 and X != 2";
bodyString = "1";
expected = parse("3");
runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
variable = parse("X");
constraintString = "X < Y and X != 2";
bodyString = "1";
expected = parse("if Y > 0 then Y else 0");
runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
variable = parse("X");
constraintString = "X < 3 and X != 2";
bodyString = "Y";
expected = parse("3*Y");
runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
variable = parse("X");
constraintString = "X < 3 and X != 2";
bodyString = "X";
expected = parse("4.5");
runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
variable = parse("X");
constraintString = "X < 3 and X != 2 and X = 2";
bodyString = "Y";
expected = parse("0");
runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
variable = parse("X");
constraintString = "X < Y and X != 2";
bodyString = "X";
expected = parse("if Y > 0 then 0.5*Y^2 else 0");
runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
variable = parse("X");
constraintString = "X < Y and X != 2";
bodyString = "Y";
expected = parse("if Y > 0 then Y^2 else 0");
runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
variable = parse("X");
constraintString = "X < Y and X != 2";
bodyString = "X + Y";
expected = parse("if Y > 0 then 1.5*Y^2 else 0");
runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
// variable = parse("X");
// constraintString = "X < Y and X != 2";
// bodyString = "X^2 + Y";
// expected = parse("if Y > 0 then 0.333333333*Y^3 + Y^2 else 0");
// runSummationTest(variable, constraintString, bodyString, expected, simplifier, context);
}
use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class LinearRealArithmeticTheoryTest method testSatisfiability.
@Test
public void testSatisfiability() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new LinearRealArithmeticTheory(true, true));
Context context = theoryTestingSupport.makeContextWithTestingInformation();
Expression variable;
String constraintString;
Expression expected;
variable = parse("X");
constraintString = "true";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X < 3";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X > 3 and X <= 3";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X > 3.1 and X <= 3.4";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X > 3 and X < 4";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X > 3.1 and X <= 3.4 and X != 3.2";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 3.2";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 3.2 and X = 3.2";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X = 3.2";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 7";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 7";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X = 7";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 8";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 7 and X = 8";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X = 7 and X = 8";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X < Y";
expected = parse("Y > 0");
runSatisfiabilityTest(variable, constraintString, expected, context);
// keep these tests together
variable = parse("X");
constraintString = "X < Y + 1";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X < Y - 4";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X < 2 - Y";
expected = parse("Y < 2");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X > Y";
expected = parse("Y < 4");
runSatisfiabilityTest(variable, constraintString, expected, context);
// keep these tests together
variable = parse("X");
constraintString = "X > Y + 1";
expected = parse("Y < 3");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X >= Y + 4";
expected = parse("Y <= 0");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X >= Y + 2";
expected = parse("Y <= 2");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X >= Y";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
// keep these tests together
variable = parse("X");
constraintString = "X >= Y + 1";
expected = parse("Y <= 3");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X > 3 and X <= 3";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X > 3.1 and X <= 3.4";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X > 3.1 and X <= 3.4 and X != 3.2";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 3.2";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 3.2 and X = 3.2";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X = 3.2";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X = 3.6";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 7";
expected = parse("true");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 7";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X = 7";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 8";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X != 7 and X = 7 and X = 8";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > 3.1 and X = 7 and X = 8";
expected = parse("false");
runSatisfiabilityTest(variable, constraintString, expected, context);
variable = parse("X");
constraintString = "X <= 3.4 and X > Z and X >= Y";
expected = parse("if Z < Y then Y <= 3.4 else Z < 3.4");
runSatisfiabilityTest(variable, constraintString, expected, context);
}
use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method compoundTest.
@Test
public void compoundTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(S)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(T)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("S = T"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a and T = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(a)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(I)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(J)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("I = J"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0 and J = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
}
use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class SymbolicShell method makeTheory.
private static Theory makeTheory() {
Theory theory = new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, false), new LinearRealArithmeticTheory(false, false), new TupleTheory(), new PropositionalTheory(), new BruteForceFunctionTheory());
theory = new BruteForceFallbackTheory(theory);
return theory;
}
use of com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory in project aic-expresso by aic-sri-international.
the class AssignmentsSamplingIteratorTest method setUp.
@Before
public void setUp() {
// Make tests repeatable
random = new Random(1);
conditionRewriter = new Recursive(new Exhaustive(new BruteForceCommonInterpreter()));
context = new TrueContext(new CompoundTheory(new DifferenceArithmeticTheory(false, false), new LinearRealArithmeticTheory(false, false), new EqualityTheory(false, false), new PropositionalTheory()));
}
Aggregations