use of de.lmu.ifi.dbs.elki.database.ids.ArrayDBIDs in project elki by elki-project.
the class PROCLUS method findDimensions.
/**
* Determines the set of correlated dimensions for each medoid in the
* specified medoid set.
*
* @param medoids the set of medoids
* @param database the database containing the objects
* @param distFunc the distance function
* @return the set of correlated dimensions for each medoid in the specified
* medoid set
*/
private long[][] findDimensions(ArrayDBIDs medoids, Relation<V> database, DistanceQuery<V> distFunc, RangeQuery<V> rangeQuery) {
// get localities
DataStore<DBIDs> localities = getLocalities(medoids, database, distFunc, rangeQuery);
// compute x_ij = avg distance from points in l_i to medoid m_i
final int dim = RelationUtil.dimensionality(database);
final int numc = medoids.size();
double[][] averageDistances = new double[numc][];
for (DBIDArrayIter iter = medoids.iter(); iter.valid(); iter.advance()) {
V medoid_i = database.get(iter);
DBIDs l_i = localities.get(iter);
double[] x_i = new double[dim];
for (DBIDIter qr = l_i.iter(); qr.valid(); qr.advance()) {
V o = database.get(qr);
for (int d = 0; d < dim; d++) {
x_i[d] += Math.abs(medoid_i.doubleValue(d) - o.doubleValue(d));
}
}
for (int d = 0; d < dim; d++) {
x_i[d] /= l_i.size();
}
averageDistances[iter.getOffset()] = x_i;
}
List<DoubleIntInt> z_ijs = computeZijs(averageDistances, dim);
return computeDimensionMap(z_ijs, dim, numc);
}
use of de.lmu.ifi.dbs.elki.database.ids.ArrayDBIDs in project elki by elki-project.
the class ExternalClustering method attachToRelation.
/**
* Build a clustering from the file result.
*
* @param database Database
* @param r Result to attach to
* @param assignment Cluster assignment
* @param name Name
*/
private void attachToRelation(Database database, Relation<?> r, IntArrayList assignment, ArrayList<String> name) {
DBIDs ids = r.getDBIDs();
if (!(ids instanceof ArrayDBIDs)) {
throw new AbortException("External clusterings can only be used with static DBIDs.");
}
Int2IntOpenHashMap sizes = new Int2IntOpenHashMap();
for (IntListIterator it = assignment.iterator(); it.hasNext(); ) {
sizes.addTo(it.nextInt(), 1);
}
Int2ObjectOpenHashMap<ArrayModifiableDBIDs> cids = new Int2ObjectOpenHashMap<>(sizes.size());
for (ObjectIterator<Int2IntMap.Entry> it = sizes.int2IntEntrySet().fastIterator(); it.hasNext(); ) {
Int2IntMap.Entry entry = it.next();
cids.put(entry.getIntKey(), DBIDUtil.newArray(entry.getIntValue()));
}
{
DBIDArrayIter it = ((ArrayDBIDs) ids).iter();
for (int i = 0; i < assignment.size(); i++) {
cids.get(assignment.getInt(i)).add(it.seek(i));
}
}
String nam = FormatUtil.format(name, " ");
String snam = nam.toLowerCase().replace(' ', '-');
Clustering<ClusterModel> result = new Clustering<>(nam, snam);
for (ObjectIterator<Int2ObjectMap.Entry<ArrayModifiableDBIDs>> it = cids.int2ObjectEntrySet().fastIterator(); it.hasNext(); ) {
Int2ObjectMap.Entry<ArrayModifiableDBIDs> entry = it.next();
boolean noise = entry.getIntKey() < 0;
result.addToplevelCluster(new Cluster<>(entry.getValue(), noise, ClusterModel.CLUSTER));
}
database.getHierarchy().add(r, result);
}
use of de.lmu.ifi.dbs.elki.database.ids.ArrayDBIDs in project elki by elki-project.
the class EvaluateDBCV method evaluateClustering.
/**
* Evaluate a single clustering.
*
* @param db Database
* @param rel Data relation
* @param cl Clustering
*
* @return dbcv DBCV-index
*/
public double evaluateClustering(Database db, Relation<O> rel, Clustering<?> cl) {
final DistanceQuery<O> dq = rel.getDistanceQuery(distanceFunction);
List<? extends Cluster<?>> clusters = cl.getAllClusters();
final int numc = clusters.size();
// DBCV needs a "dimensionality".
@SuppressWarnings("unchecked") final Relation<? extends SpatialComparable> vrel = (Relation<? extends SpatialComparable>) rel;
final int dim = RelationUtil.dimensionality(vrel);
// precompute all core distances
ArrayDBIDs[] cids = new ArrayDBIDs[numc];
double[][] coreDists = new double[numc][];
for (int c = 0; c < numc; c++) {
Cluster<?> cluster = clusters.get(c);
// Singletons are considered as Noise, because they have no sparseness
if (cluster.isNoise() || cluster.size() < 2) {
coreDists[c] = null;
continue;
}
// Store for use below:
ArrayDBIDs ids = cids[c] = DBIDUtil.ensureArray(cluster.getIDs());
double[] clusterCoreDists = coreDists[c] = new double[ids.size()];
for (DBIDArrayIter it = ids.iter(), it2 = ids.iter(); it.valid(); it.advance()) {
double currentCoreDist = 0;
int neighbors = 0;
for (it2.seek(0); it2.valid(); it2.advance()) {
if (DBIDUtil.equal(it, it2)) {
continue;
}
double dist = dq.distance(it, it2);
// We ignore such objects.
if (dist > 0) {
currentCoreDist += MathUtil.powi(1. / dist, dim);
++neighbors;
}
}
// Average, and undo power.
clusterCoreDists[it.getOffset()] = FastMath.pow(currentCoreDist / neighbors, -1. / dim);
}
}
// compute density sparseness of all clusters
int[][] clusterDegrees = new int[numc][];
double[] clusterDscMax = new double[numc];
// describes if a cluster contains any internal edges
boolean[] internalEdges = new boolean[numc];
for (int c = 0; c < numc; c++) {
Cluster<?> cluster = clusters.get(c);
if (cluster.isNoise() || cluster.size() < 2) {
clusterDegrees[c] = null;
clusterDscMax[c] = Double.NaN;
continue;
}
double[] clusterCoreDists = coreDists[c];
ArrayDBIDs ids = cids[c];
// Density Sparseness of the Cluster
double dscMax = 0;
double[][] distances = new double[cluster.size()][cluster.size()];
// create mutability distance matrix for Minimum Spanning Tree
for (DBIDArrayIter it = ids.iter(), it2 = ids.iter(); it.valid(); it.advance()) {
double currentCoreDist = clusterCoreDists[it.getOffset()];
for (it2.seek(it.getOffset() + 1); it2.valid(); it2.advance()) {
double mutualReachDist = MathUtil.max(currentCoreDist, clusterCoreDists[it2.getOffset()], dq.distance(it, it2));
distances[it.getOffset()][it2.getOffset()] = mutualReachDist;
distances[it2.getOffset()][it.getOffset()] = mutualReachDist;
}
}
// generate Minimum Spanning Tree
int[] nodes = PrimsMinimumSpanningTree.processDense(distances);
// get degree of all nodes in the spanning tree
int[] degree = new int[cluster.size()];
for (int i = 0; i < nodes.length; i++) {
degree[nodes[i]]++;
}
// check if cluster contains any internal edges
for (int i = 0; i < nodes.length; i += 2) {
if (degree[nodes[i]] > 1 && degree[nodes[i + 1]] > 1) {
internalEdges[c] = true;
}
}
clusterDegrees[c] = degree;
// find maximum sparseness in the Minimum Spanning Tree
for (int i = 0; i < nodes.length; i = i + 2) {
final int n1 = nodes[i], n2 = nodes[i + 1];
// If a cluster has no internal nodes we consider all edges.
if (distances[n1][n2] > dscMax && (!internalEdges[c] || (degree[n1] > 1 && degree[n2] > 1))) {
dscMax = distances[n1][n2];
}
}
clusterDscMax[c] = dscMax;
}
// compute density separation of all clusters
double dbcv = 0;
for (int c = 0; c < numc; c++) {
Cluster<?> cluster = clusters.get(c);
if (cluster.isNoise() || cluster.size() < 2) {
continue;
}
double currentDscMax = clusterDscMax[c];
double[] clusterCoreDists = coreDists[c];
int[] currentDegree = clusterDegrees[c];
// minimal Density Separation of the Cluster
double dspcMin = Double.POSITIVE_INFINITY;
for (DBIDArrayIter it = cids[c].iter(); it.valid(); it.advance()) {
// nodes.
if (currentDegree[it.getOffset()] < 2 && internalEdges[c]) {
continue;
}
double currentCoreDist = clusterCoreDists[it.getOffset()];
for (int oc = 0; oc < numc; oc++) {
Cluster<?> ocluster = clusters.get(oc);
if (ocluster.isNoise() || ocluster.size() < 2 || cluster == ocluster) {
continue;
}
int[] oDegree = clusterDegrees[oc];
double[] oclusterCoreDists = coreDists[oc];
for (DBIDArrayIter it2 = cids[oc].iter(); it2.valid(); it2.advance()) {
if (oDegree[it2.getOffset()] < 2 && internalEdges[oc]) {
continue;
}
double mutualReachDist = MathUtil.max(currentCoreDist, oclusterCoreDists[it2.getOffset()], dq.distance(it, it2));
dspcMin = mutualReachDist < dspcMin ? mutualReachDist : dspcMin;
}
}
}
// compute DBCV
double vc = (dspcMin - currentDscMax) / MathUtil.max(dspcMin, currentDscMax);
double weight = cluster.size() / (double) rel.size();
dbcv += weight * vc;
}
EvaluationResult ev = EvaluationResult.findOrCreate(db.getHierarchy(), cl, "Internal Clustering Evaluation", "internal evaluation");
MeasurementGroup g = ev.findOrCreateGroup("Distance-based Evaluation");
g.addMeasure("Density Based Clustering Validation", dbcv, 0., Double.POSITIVE_INFINITY, 0., true);
db.getHierarchy().resultChanged(ev);
return dbcv;
}
use of de.lmu.ifi.dbs.elki.database.ids.ArrayDBIDs in project elki by elki-project.
the class EvaluateSilhouette method evaluateClustering.
/**
* Evaluate a single clustering.
*
* @param db Database
* @param rel Data relation
* @param dq Distance query
* @param c Clustering
* @return Average silhouette
*/
public double evaluateClustering(Database db, Relation<O> rel, DistanceQuery<O> dq, Clustering<?> c) {
List<? extends Cluster<?>> clusters = c.getAllClusters();
MeanVariance msil = new MeanVariance();
int ignorednoise = 0;
for (Cluster<?> cluster : clusters) {
// Note: we treat 1-element clusters the same as noise.
if (cluster.size() <= 1 || cluster.isNoise()) {
switch(noiseOption) {
case IGNORE_NOISE:
ignorednoise += cluster.size();
// Ignore noise elements
continue;
case TREAT_NOISE_AS_SINGLETONS:
// As suggested in Rousseeuw, we use 0 for singletons.
msil.put(0., cluster.size());
continue;
case MERGE_NOISE:
// Treat as cluster below
break;
}
}
ArrayDBIDs ids = DBIDUtil.ensureArray(cluster.getIDs());
// temporary storage.
double[] as = new double[ids.size()];
DBIDArrayIter it1 = ids.iter(), it2 = ids.iter();
for (it1.seek(0); it1.valid(); it1.advance()) {
// a: In-cluster distances
// Already computed distances
double a = as[it1.getOffset()];
for (it2.seek(it1.getOffset() + 1); it2.valid(); it2.advance()) {
final double dist = dq.distance(it1, it2);
a += dist;
as[it2.getOffset()] += dist;
}
a /= (ids.size() - 1);
// b: minimum average distance to other clusters:
double b = Double.POSITIVE_INFINITY;
for (Cluster<?> ocluster : clusters) {
if (ocluster == /* yes, reference identity */
cluster) {
// Same cluster
continue;
}
if (ocluster.size() <= 1 || ocluster.isNoise()) {
switch(noiseOption) {
case IGNORE_NOISE:
// Ignore noise elements
continue;
case TREAT_NOISE_AS_SINGLETONS:
// Treat noise cluster as singletons:
for (DBIDIter it3 = ocluster.getIDs().iter(); it3.valid(); it3.advance()) {
final double dist = dq.distance(it1, it3);
// Minimum average
b = dist < b ? dist : b;
}
continue;
case MERGE_NOISE:
// Treat as cluster below
break;
}
}
final DBIDs oids = ocluster.getIDs();
double btmp = 0.;
for (DBIDIter it3 = oids.iter(); it3.valid(); it3.advance()) {
btmp += dq.distance(it1, it3);
}
// Average
btmp /= oids.size();
// Minimum average
b = btmp < b ? btmp : b;
}
// One cluster only?
b = b < Double.POSITIVE_INFINITY ? b : a;
msil.put((b - a) / (b > a ? b : a));
}
}
double penalty = 1.;
// Only if {@link NoiseHandling#IGNORE_NOISE}:
if (penalize && ignorednoise > 0) {
penalty = (rel.size() - ignorednoise) / (double) rel.size();
}
final double meansil = penalty * msil.getMean();
final double stdsil = penalty * msil.getSampleStddev();
if (LOG.isStatistics()) {
LOG.statistics(new StringStatistic(key + ".silhouette.noise-handling", noiseOption.toString()));
if (ignorednoise > 0) {
LOG.statistics(new LongStatistic(key + ".silhouette.noise", ignorednoise));
}
LOG.statistics(new DoubleStatistic(key + ".silhouette.mean", meansil));
LOG.statistics(new DoubleStatistic(key + ".silhouette.stddev", stdsil));
}
EvaluationResult ev = EvaluationResult.findOrCreate(db.getHierarchy(), c, "Internal Clustering Evaluation", "internal evaluation");
MeasurementGroup g = ev.findOrCreateGroup("Distance-based Evaluation");
g.addMeasure("Silhouette +-" + FormatUtil.NF2.format(stdsil), meansil, -1., 1., 0., false);
db.getHierarchy().resultChanged(ev);
return meansil;
}
use of de.lmu.ifi.dbs.elki.database.ids.ArrayDBIDs in project elki by elki-project.
the class AbstractOutlierAlgorithmTest method testSingleScore.
/**
* Test the outlier score of a single object.
*
* @param result Result object to use
* @param id Object ID
* @param expected expected value
*/
protected void testSingleScore(OutlierResult result, int id, double expected) {
assertNotNull("No outlier result", result);
assertNotNull("No score result.", result.getScores());
DBIDs ids = result.getScores().getDBIDs();
assertTrue("IDs must be array-based", ids instanceof ArrayDBIDs);
// Translate offset. We used to use 1-indexed
DBIDRef dbid = ((ArrayDBIDs) ids).iter().seek(id - 1);
assertNotNull("No result for ID " + id, result.getScores().doubleValue(dbid));
double actual = result.getScores().doubleValue(dbid);
assertEquals("Outlier score of object " + id + " doesn't match.", expected, actual, 0.0001);
}
Aggregations