use of de.lmu.ifi.dbs.elki.evaluation.scores.adapter.VectorNonZero in project elki by elki-project.
the class VisualizePairwiseGainMatrix method run.
@Override
public void run() {
final Database database = inputstep.getDatabase();
ResultHierarchy hier = database.getHierarchy();
Relation<NumberVector> relation = database.getRelation(TypeUtil.NUMBER_VECTOR_FIELD);
final Relation<String> labels = DatabaseUtil.guessLabelRepresentation(database);
final DBID firstid = DBIDUtil.deref(labels.iterDBIDs());
final String firstlabel = labels.get(firstid);
if (!firstlabel.matches(".*by.?label.*")) {
throw new AbortException("No 'by label' reference outlier found, which is needed for weighting!");
}
relation = GreedyEnsembleExperiment.applyPrescaling(prescaling, relation, firstid);
// Dimensionality and reference vector
final int dim = RelationUtil.dimensionality(relation);
final NumberVector refvec = relation.get(firstid);
// Build the truth vector
VectorNonZero pos = new VectorNonZero(refvec);
ArrayModifiableDBIDs ids = DBIDUtil.newArray(relation.getDBIDs());
ids.remove(firstid);
ids.sort();
final int size = ids.size();
double[][] data = new double[size][size];
DoubleMinMax minmax = new DoubleMinMax(), commax = new DoubleMinMax();
{
FiniteProgress prog = LOG.isVerbose() ? new FiniteProgress("Computing ensemble gain.", size * (size + 1) >> 1, LOG) : null;
// Vote combination buffer.
double[] buf = new double[2];
int a = 0;
for (DBIDIter id = ids.iter(); id.valid(); id.advance(), a++) {
final NumberVector veca = relation.get(id);
// Direct AUC score:
{
double auc = ROCEvaluation.computeROCAUC(pos, new DecreasingVectorIter(veca));
data[a][a] = auc;
// minmax.put(auc);
LOG.incrementProcessed(prog);
}
// Compare to others, exploiting symmetry
DBIDArrayIter id2 = ids.iter();
id2.seek(a + 1);
for (int b = a + 1; b < size; b++, id2.advance()) {
final NumberVector vecb = relation.get(id2);
double[] combined = new double[dim];
for (int d = 0; d < dim; d++) {
buf[0] = veca.doubleValue(d);
buf[1] = vecb.doubleValue(d);
combined[d] = voting.combine(buf);
}
double auc = ROCEvaluation.computeROCAUC(pos, new DecreasingVectorIter(DoubleVector.wrap(combined)));
// logger.verbose(auc + " " + labels.get(ids.get(a)) + " " +
// labels.get(ids.get(b)));
data[a][b] = auc;
data[b][a] = auc;
commax.put(data[a][b]);
// minmax.put(auc);
LOG.incrementProcessed(prog);
}
}
LOG.ensureCompleted(prog);
}
for (int a = 0; a < size; a++) {
for (int b = a + 1; b < size; b++) {
double ref = Math.max(data[a][a], data[b][b]);
data[a][b] = (data[a][b] - ref) / (1 - ref);
data[b][a] = (data[b][a] - ref) / (1 - ref);
// logger.verbose(data[a][b] + " " + labels.get(ids.get(a)) + " " +
// labels.get(ids.get(b)));
minmax.put(data[a][b]);
}
}
for (int a = 0; a < size; a++) {
data[a][a] = 0;
}
LOG.verbose("Gain: " + minmax.toString() + " AUC: " + commax.toString());
boolean hasneg = (minmax.getMin() < -1E-3);
LinearScaling scale;
if (!hasneg) {
scale = LinearScaling.fromMinMax(0., minmax.getMax());
} else {
scale = LinearScaling.fromMinMax(0.0, Math.max(minmax.getMax(), -minmax.getMin()));
}
scale = LinearScaling.fromMinMax(0., .5);
BufferedImage img = new BufferedImage(size, size, BufferedImage.TYPE_INT_RGB);
for (int x = 0; x < size; x++) {
for (int y = x; y < size; y++) {
double val = data[x][y];
val = Math.max(-1, Math.min(1., scale.getScaled(val)));
// Compute color:
final int col;
{
if (val >= 0) {
int ival = 0xFF & (int) (255 * val);
col = 0xff000000 | (ival << 8);
} else {
int ival = 0xFF & (int) (255 * -val);
col = 0xff000000 | (ival << 16);
}
}
img.setRGB(x, y, col);
img.setRGB(y, x, col);
}
}
SimilarityMatrix smat = new ComputeSimilarityMatrixImage.SimilarityMatrix(img, relation, ids);
hier.add(database, smat);
VisualizerContext context = vispar.newContext(hier, smat);
// Attach visualizers to results
SimilarityMatrixVisualizer factory = new SimilarityMatrixVisualizer();
factory.processNewResult(context, database);
VisualizationTree.findVis(context).filter(VisualizationTask.class).forEach(task -> {
if (task.getFactory() == factory) {
showVisualization(context, factory, task);
}
});
}
use of de.lmu.ifi.dbs.elki.evaluation.scores.adapter.VectorNonZero in project elki by elki-project.
the class EvaluatePrecomputedOutlierScores method processRow.
private void processRow(PrintStream fout, NumberVector vec, String label) {
if (checkForNaNs(vec)) {
LOG.warning("NaN value encountered in vector " + label);
return;
}
if (positive == null) {
if (!label.matches("bylabel")) {
throw new AbortException("No 'by label' reference outlier found, which is needed for evaluation!");
}
positive = new VectorNonZero(vec);
endcg = NDCGEvaluation.STATIC.expected(positive.numPositive(), positive.getDimensionality());
return;
}
AbstractVectorIter iter = reverse.matcher(label).find() ? new IncreasingVectorIter(vec) : new DecreasingVectorIter(vec);
double rate = positive.numPositive() / (double) positive.getDimensionality();
double auc = ROCEvaluation.STATIC.evaluate(positive, iter.seek(0));
double avep = AveragePrecisionEvaluation.STATIC.evaluate(positive, iter.seek(0));
double rprecision = PrecisionAtKEvaluation.RPRECISION.evaluate(positive, iter.seek(0));
double maxf1 = MaximumF1Evaluation.STATIC.evaluate(positive, iter.seek(0));
double dcg = DCGEvaluation.STATIC.evaluate(positive, iter.seek(0));
double ndcg = NDCGEvaluation.STATIC.evaluate(positive, iter.seek(0));
double adjauc = 2 * auc - 1;
double adjrprecision = (rprecision - rate) / (1 - rate);
double adjavep = (avep - rate) / (1 - rate);
double adjmaxf1 = (maxf1 - rate) / (1 - rate);
double adjdcg = (ndcg - endcg) / (1 - endcg);
final int p = label.lastIndexOf('-');
String prefix = label.substring(0, p);
int k = Integer.valueOf(label.substring(p + 1));
// Write CSV
if (name != null) {
fout.append('"').append(name).append("\",");
}
fout.append('"').append(prefix).append('"');
fout.append(',').append(Integer.toString(k));
fout.append(',').append(Double.toString(auc));
fout.append(',').append(Double.toString(avep));
fout.append(',').append(Double.toString(rprecision));
fout.append(',').append(Double.toString(maxf1));
fout.append(',').append(Double.toString(dcg));
fout.append(',').append(Double.toString(ndcg));
fout.append(',').append(Double.toString(adjauc));
fout.append(',').append(Double.toString(adjavep));
fout.append(',').append(Double.toString(adjrprecision));
fout.append(',').append(Double.toString(adjmaxf1));
fout.append(',').append(Double.toString(adjdcg));
fout.append('\n');
}
use of de.lmu.ifi.dbs.elki.evaluation.scores.adapter.VectorNonZero in project elki by elki-project.
the class GreedyEnsembleExperiment method run.
@Override
public void run() {
// Note: the database contains the *result vectors*, not the original data.
final Database database = inputstep.getDatabase();
Relation<NumberVector> relation = database.getRelation(TypeUtil.NUMBER_VECTOR_FIELD);
final Relation<String> labels = DatabaseUtil.guessLabelRepresentation(database);
final DBID firstid = DBIDUtil.deref(labels.iterDBIDs());
final String firstlabel = labels.get(firstid);
if (!firstlabel.matches("bylabel")) {
throw new AbortException("No 'by label' reference outlier found, which is needed for weighting!");
}
relation = applyPrescaling(prescaling, relation, firstid);
final int numcand = relation.size() - 1;
// Dimensionality and reference vector
final int dim = RelationUtil.dimensionality(relation);
final NumberVector refvec = relation.get(firstid);
// Build the positive index set for ROC AUC.
VectorNonZero positive = new VectorNonZero(refvec);
final int desired_outliers = (int) (rate * dim);
int union_outliers = 0;
final int[] outliers_seen = new int[dim];
// Merge the top-k for each ensemble member, until we have enough
// candidates.
{
int k = 0;
ArrayList<DecreasingVectorIter> iters = new ArrayList<>(numcand);
if (minvote >= numcand) {
minvote = Math.max(1, numcand - 1);
}
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
// Skip "by label", obviously
if (DBIDUtil.equal(firstid, iditer)) {
continue;
}
iters.add(new DecreasingVectorIter(relation.get(iditer)));
}
loop: while (union_outliers < desired_outliers) {
for (DecreasingVectorIter iter : iters) {
if (!iter.valid()) {
LOG.warning("Union_outliers=" + union_outliers + " < desired_outliers=" + desired_outliers + " minvote=" + minvote);
break loop;
}
int cur = iter.dim();
outliers_seen[cur] += 1;
if (outliers_seen[cur] == minvote) {
union_outliers += 1;
}
iter.advance();
}
k++;
}
LOG.verbose("Merged top " + k + " outliers to: " + union_outliers + " outliers (desired: at least " + desired_outliers + ")");
}
// Build the final weight vector.
final double[] estimated_weights = new double[dim];
final double[] estimated_truth = new double[dim];
updateEstimations(outliers_seen, union_outliers, estimated_weights, estimated_truth);
DoubleVector estimated_truth_vec = DoubleVector.wrap(estimated_truth);
PrimitiveDistanceFunction<NumberVector> wdist = getDistanceFunction(estimated_weights);
PrimitiveDistanceFunction<NumberVector> tdist = wdist;
// Build the naive ensemble:
final double[] naiveensemble = new double[dim];
{
double[] buf = new double[numcand];
for (int d = 0; d < dim; d++) {
int i = 0;
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
if (DBIDUtil.equal(firstid, iditer)) {
continue;
}
final NumberVector vec = relation.get(iditer);
buf[i] = vec.doubleValue(d);
i++;
}
naiveensemble[d] = voting.combine(buf, i);
if (Double.isNaN(naiveensemble[d])) {
LOG.warning("NaN after combining: " + FormatUtil.format(buf) + " i=" + i + " " + voting.toString());
}
}
}
DoubleVector naivevec = DoubleVector.wrap(naiveensemble);
// Compute single AUC scores and estimations.
// Remember the method most similar to the estimation
double bestauc = 0.0;
String bestaucstr = "";
double bestcost = Double.POSITIVE_INFINITY;
String bestcoststr = "";
DBID bestid = null;
double bestest = Double.POSITIVE_INFINITY;
{
final double[] greedyensemble = new double[dim];
// Compute individual scores
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
if (DBIDUtil.equal(firstid, iditer)) {
continue;
}
// fout.append(labels.get(id));
final NumberVector vec = relation.get(iditer);
singleEnsemble(greedyensemble, vec);
double auc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(DoubleVector.wrap(greedyensemble)));
double estimated = wdist.distance(DoubleVector.wrap(greedyensemble), estimated_truth_vec);
double cost = tdist.distance(DoubleVector.wrap(greedyensemble), refvec);
LOG.verbose("ROC AUC: " + auc + " estimated " + estimated + " cost " + cost + " " + labels.get(iditer));
if (auc > bestauc) {
bestauc = auc;
bestaucstr = labels.get(iditer);
}
if (cost < bestcost) {
bestcost = cost;
bestcoststr = labels.get(iditer);
}
if (estimated < bestest || bestid == null) {
bestest = estimated;
bestid = DBIDUtil.deref(iditer);
}
}
}
// Initialize ensemble with "best" method
if (prescaling != null) {
LOG.verbose("Input prescaling: " + prescaling);
}
LOG.verbose("Distance function: " + wdist);
LOG.verbose("Ensemble voting: " + voting);
if (scaling != null) {
LOG.verbose("Ensemble rescaling: " + scaling);
}
LOG.verbose("Initial estimation of outliers: " + union_outliers);
LOG.verbose("Initializing ensemble with: " + labels.get(bestid));
ModifiableDBIDs ensemble = DBIDUtil.newArray(bestid);
ModifiableDBIDs enscands = DBIDUtil.newHashSet(relation.getDBIDs());
ModifiableDBIDs dropped = DBIDUtil.newHashSet(relation.size());
dropped.add(firstid);
enscands.remove(bestid);
enscands.remove(firstid);
final double[] greedyensemble = new double[dim];
singleEnsemble(greedyensemble, relation.get(bestid));
// Greedily grow the ensemble
final double[] testensemble = new double[dim];
while (enscands.size() > 0) {
NumberVector greedyvec = DoubleVector.wrap(greedyensemble);
final double oldd = wdist.distance(estimated_truth_vec, greedyvec);
final int heapsize = enscands.size();
ModifiableDoubleDBIDList heap = DBIDUtil.newDistanceDBIDList(heapsize);
double[] tmp = new double[dim];
for (DBIDIter iter = enscands.iter(); iter.valid(); iter.advance()) {
final NumberVector vec = relation.get(iter);
singleEnsemble(tmp, vec);
double diversity = wdist.distance(DoubleVector.wrap(greedyensemble), greedyvec);
heap.add(diversity, iter);
}
heap.sort();
for (DoubleDBIDListMIter it = heap.iter(); heap.size() > 0; it.remove()) {
// Last
it.seek(heap.size() - 1);
enscands.remove(it);
final NumberVector vec = relation.get(it);
// Build combined ensemble.
{
double[] buf = new double[ensemble.size() + 1];
for (int i = 0; i < dim; i++) {
int j = 0;
for (DBIDIter iter = ensemble.iter(); iter.valid(); iter.advance()) {
buf[j] = relation.get(iter).doubleValue(i);
j++;
}
buf[j] = vec.doubleValue(i);
testensemble[i] = voting.combine(buf, j + 1);
}
}
applyScaling(testensemble, scaling);
NumberVector testvec = DoubleVector.wrap(testensemble);
double newd = wdist.distance(estimated_truth_vec, testvec);
// labels.get(bestadd));
if (newd < oldd) {
System.arraycopy(testensemble, 0, greedyensemble, 0, dim);
ensemble.add(it);
// Recompute heap
break;
} else {
dropped.add(it);
// logger.verbose("Discarding: " + labels.get(bestadd));
if (refine_truth) {
// Update target vectors and weights
ArrayList<DecreasingVectorIter> iters = new ArrayList<>(numcand);
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
// Skip "by label", obviously
if (DBIDUtil.equal(firstid, iditer) || dropped.contains(iditer)) {
continue;
}
iters.add(new DecreasingVectorIter(relation.get(iditer)));
}
if (minvote >= iters.size()) {
minvote = iters.size() - 1;
}
union_outliers = 0;
Arrays.fill(outliers_seen, 0);
while (union_outliers < desired_outliers) {
for (DecreasingVectorIter iter : iters) {
if (!iter.valid()) {
break;
}
int cur = iter.dim();
if (outliers_seen[cur] == 0) {
outliers_seen[cur] = 1;
} else {
outliers_seen[cur] += 1;
}
if (outliers_seen[cur] == minvote) {
union_outliers += 1;
}
iter.advance();
}
}
LOG.warning("New num outliers: " + union_outliers);
updateEstimations(outliers_seen, union_outliers, estimated_weights, estimated_truth);
estimated_truth_vec = DoubleVector.wrap(estimated_truth);
}
}
}
}
// Build the improved ensemble:
StringBuilder greedylbl = new StringBuilder();
{
for (DBIDIter iter = ensemble.iter(); iter.valid(); iter.advance()) {
if (greedylbl.length() > 0) {
greedylbl.append(' ');
}
greedylbl.append(labels.get(iter));
}
}
DoubleVector greedyvec = DoubleVector.wrap(greedyensemble);
if (refine_truth) {
LOG.verbose("Estimated outliers remaining: " + union_outliers);
}
LOG.verbose("Greedy ensemble (" + ensemble.size() + "): " + greedylbl.toString());
LOG.verbose("Best single ROC AUC: " + bestauc + " (" + bestaucstr + ")");
LOG.verbose("Best single cost: " + bestcost + " (" + bestcoststr + ")");
// Evaluate the naive ensemble and the "shrunk" ensemble
double naiveauc, naivecost;
{
naiveauc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(naivevec));
naivecost = tdist.distance(naivevec, refvec);
LOG.verbose("Naive ensemble AUC: " + naiveauc + " cost: " + naivecost);
LOG.verbose("Naive ensemble Gain: " + gain(naiveauc, bestauc, 1) + " cost gain: " + gain(naivecost, bestcost, 0));
}
double greedyauc, greedycost;
{
greedyauc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(greedyvec));
greedycost = tdist.distance(greedyvec, refvec);
LOG.verbose("Greedy ensemble AUC: " + greedyauc + " cost: " + greedycost);
LOG.verbose("Greedy ensemble Gain to best: " + gain(greedyauc, bestauc, 1) + " cost gain: " + gain(greedycost, bestcost, 0));
LOG.verbose("Greedy ensemble Gain to naive: " + gain(greedyauc, naiveauc, 1) + " cost gain: " + gain(greedycost, naivecost, 0));
}
{
MeanVariance meanauc = new MeanVariance();
MeanVariance meancost = new MeanVariance();
HashSetModifiableDBIDs candidates = DBIDUtil.newHashSet(relation.getDBIDs());
candidates.remove(firstid);
for (int i = 0; i < 1000; i++) {
// Build the improved ensemble:
final double[] randomensemble = new double[dim];
{
DBIDs random = DBIDUtil.randomSample(candidates, ensemble.size(), (long) i);
double[] buf = new double[random.size()];
for (int d = 0; d < dim; d++) {
int j = 0;
for (DBIDIter iter = random.iter(); iter.valid(); iter.advance()) {
assert (!DBIDUtil.equal(firstid, iter));
final NumberVector vec = relation.get(iter);
buf[j] = vec.doubleValue(d);
j++;
}
randomensemble[d] = voting.combine(buf, j);
}
}
applyScaling(randomensemble, scaling);
NumberVector randomvec = DoubleVector.wrap(randomensemble);
double auc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(randomvec));
meanauc.put(auc);
double cost = tdist.distance(randomvec, refvec);
meancost.put(cost);
}
LOG.verbose("Random ensemble AUC: " + meanauc.getMean() + " + stddev: " + meanauc.getSampleStddev() + " = " + (meanauc.getMean() + meanauc.getSampleStddev()));
LOG.verbose("Random ensemble Gain: " + gain(meanauc.getMean(), bestauc, 1));
LOG.verbose("Greedy improvement: " + (greedyauc - meanauc.getMean()) / meanauc.getSampleStddev() + " standard deviations.");
LOG.verbose("Random ensemble Cost: " + meancost.getMean() + " + stddev: " + meancost.getSampleStddev() + " = " + (meancost.getMean() + meanauc.getSampleStddev()));
LOG.verbose("Random ensemble Gain: " + gain(meancost.getMean(), bestcost, 0));
LOG.verbose("Greedy improvement: " + (meancost.getMean() - greedycost) / meancost.getSampleStddev() + " standard deviations.");
LOG.verbose("Naive ensemble Gain to random: " + gain(naiveauc, meanauc.getMean(), 1) + " cost gain: " + gain(naivecost, meancost.getMean(), 0));
LOG.verbose("Random ensemble Gain to naive: " + gain(meanauc.getMean(), naiveauc, 1) + " cost gain: " + gain(meancost.getMean(), naivecost, 0));
LOG.verbose("Greedy ensemble Gain to random: " + gain(greedyauc, meanauc.getMean(), 1) + " cost gain: " + gain(greedycost, meancost.getMean(), 0));
}
}
Aggregations