use of de.lmu.ifi.dbs.elki.index.preprocessed.knn.MaterializeKNNPreprocessor in project elki by elki-project.
the class OnlineLOF method run.
/**
* Performs the Generalized LOF_SCORE algorithm on the given database by
* calling {@code #doRunInTime(Database)} and adds a {@link LOFKNNListener} to
* the preprocessors.
*/
@Override
public OutlierResult run(Database database, Relation<O> relation) {
StepProgress stepprog = LOG.isVerbose() ? new StepProgress("OnlineLOF", 3) : null;
Pair<Pair<KNNQuery<O>, KNNQuery<O>>, Pair<RKNNQuery<O>, RKNNQuery<O>>> queries = getKNNAndRkNNQueries(database, relation, stepprog);
KNNQuery<O> kNNRefer = queries.getFirst().getFirst();
KNNQuery<O> kNNReach = queries.getFirst().getSecond();
RKNNQuery<O> rkNNRefer = queries.getSecond().getFirst();
RKNNQuery<O> rkNNReach = queries.getSecond().getSecond();
LOFResult<O> lofResult = super.doRunInTime(relation.getDBIDs(), kNNRefer, kNNReach, stepprog);
lofResult.setRkNNRefer(rkNNRefer);
lofResult.setRkNNReach(rkNNReach);
// add listener
KNNListener l = new LOFKNNListener(lofResult);
((MaterializeKNNPreprocessor<O>) ((PreprocessorKNNQuery<O>) lofResult.getKNNRefer()).getPreprocessor()).addKNNListener(l);
((MaterializeKNNPreprocessor<O>) ((PreprocessorKNNQuery<O>) lofResult.getKNNReach()).getPreprocessor()).addKNNListener(l);
return lofResult.getResult();
}
use of de.lmu.ifi.dbs.elki.index.preprocessed.knn.MaterializeKNNPreprocessor in project elki by elki-project.
the class ComputeKNNOutlierScores method run.
@Override
public void run() {
final Database database = inputstep.getDatabase();
final Relation<O> relation = database.getRelation(distf.getInputTypeRestriction());
// Ensure we don't go beyond the relation size:
final int maxk = Math.min(this.maxk, relation.size() - 1);
// Get a KNN query.
final int lim = Math.min(maxk + 2, relation.size());
KNNQuery<O> knnq = QueryUtil.getKNNQuery(relation, distf, lim);
// Precompute kNN:
if (!(knnq instanceof PreprocessorKNNQuery)) {
MaterializeKNNPreprocessor<O> preproc = new MaterializeKNNPreprocessor<>(relation, distf, lim);
preproc.initialize();
relation.getHierarchy().add(relation, preproc);
}
// Test that we now get a proper index query
knnq = QueryUtil.getKNNQuery(relation, distf, lim);
if (!(knnq instanceof PreprocessorKNNQuery)) {
throw new AbortException("Not using preprocessor knn query -- KNN queries using class: " + knnq.getClass());
}
// Warn for some known slow methods and large k:
if (!isDisabled("LDOF") && maxk > 100) {
LOG.verbose("Note: LODF needs O(k^2) distance computations. Use -" + Parameterizer.DISABLE_ID.getName() + " LDOF to disable.");
}
if (!isDisabled("FastABOD") && maxk > 100) {
LOG.warning("Note: FastABOD needs quadratic memory. Use -" + Parameterizer.DISABLE_ID.getName() + " FastABOD to disable.");
}
if (!isDisabled("DWOF") && maxk > 100) {
LOG.warning("Note: DWOF needs O(k^2) distance computations. Use -" + Parameterizer.DISABLE_ID.getName() + " DWOF to disable.");
}
final DBIDs ids = relation.getDBIDs();
try (PrintStream fout = new PrintStream(outfile)) {
// Control: print the DBIDs in case we are seeing an odd iteration
//
fout.append("# Data set size: " + relation.size()).append(" data type: " + relation.getDataTypeInformation()).append(FormatUtil.NEWLINE);
// Label outlier result (reference)
writeResult(fout, ids, bylabel.run(database), new IdentityScaling(), "bylabel");
final int startk = (this.startk > 0) ? this.startk : this.stepk;
final int startkmin2 = (startk >= 2) ? startk : (startk + stepk);
final int startkmin3 = (startk >= 3) ? startk : (startkmin2 >= 3) ? startkmin2 : (startkmin2 + stepk);
// Output function:
BiConsumer<String, OutlierResult> out = (kstr, result) -> writeResult(fout, ids, result, scaling, kstr);
// KNN
runForEachK(//
"KNN", //
startk, //
stepk, //
maxk, k -> //
new KNNOutlier<O>(distf, k).run(database, relation), out);
// KNN Weight
runForEachK(//
"KNNW", //
startk, //
stepk, //
maxk, k -> //
new KNNWeightOutlier<O>(distf, k).run(database, relation), out);
// Run LOF
runForEachK(//
"LOF", //
startk, //
stepk, //
maxk, k -> //
new LOF<O>(k, distf).run(database, relation), out);
// Run Simplified-LOF
runForEachK(//
"SimplifiedLOF", //
startk, //
stepk, //
maxk, k -> //
new SimplifiedLOF<O>(k, distf).run(database, relation), out);
// LoOP
runForEachK(//
"LoOP", //
startk, //
stepk, //
maxk, k -> //
new LoOP<O>(k, k, distf, distf, 1.0).run(database, relation), out);
// LDOF
runForEachK(//
"LDOF", //
startkmin2, //
stepk, //
maxk, k -> //
new LDOF<O>(distf, k).run(database, relation), out);
// Run ODIN
runForEachK(//
"ODIN", //
startk, //
stepk, //
maxk, k -> //
new ODIN<O>(distf, k).run(database, relation), out);
// Run FastABOD
runForEachK(//
"FastABOD", //
startkmin3, //
stepk, //
maxk, k -> //
new FastABOD<O>(new PolynomialKernelFunction(2), k).run(database, relation), out);
// Run KDEOS with intrinsic dimensionality 2.
runForEachK(//
"KDEOS", //
startkmin2, //
stepk, //
maxk, k -> new //
KDEOS<O>(//
distf, //
k, //
k, //
GaussianKernelDensityFunction.KERNEL, //
0., 0.5 * GaussianKernelDensityFunction.KERNEL.canonicalBandwidth(), //
2).run(database, relation), out);
// Run LDF
runForEachK(//
"LDF", //
startk, //
stepk, //
maxk, k -> //
new LDF<O>(k, distf, GaussianKernelDensityFunction.KERNEL, 1., .1).run(database, relation), out);
// Run INFLO
runForEachK(//
"INFLO", //
startk, //
stepk, //
maxk, k -> //
new INFLO<O>(distf, 1.0, k).run(database, relation), out);
// Run COF
runForEachK(//
"COF", //
startk, //
stepk, //
maxk, k -> //
new COF<O>(k, distf).run(database, relation), out);
// Run simple Intrinsic dimensionality
runForEachK(//
"Intrinsic", //
startkmin2, //
stepk, //
maxk, k -> //
new IntrinsicDimensionalityOutlier<O>(distf, k, AggregatedHillEstimator.STATIC).run(database, relation), out);
// Run IDOS
runForEachK(//
"IDOS", //
startkmin2, //
stepk, //
maxk, k -> //
new IDOS<O>(distf, AggregatedHillEstimator.STATIC, k, k).run(database, relation), out);
// Run simple kernel-density LOF variant
runForEachK(//
"KDLOF", //
startkmin2, //
stepk, //
maxk, k -> //
new SimpleKernelDensityLOF<O>(k, distf, GaussianKernelDensityFunction.KERNEL).run(database, relation), out);
// Run DWOF (need pairwise distances, too)
runForEachK(//
"DWOF", //
startkmin2, //
stepk, //
maxk, k -> //
new DWOF<O>(distf, k, 1.1).run(database, relation), out);
// Run LIC
runForEachK(//
"LIC", //
startk, //
stepk, //
maxk, k -> //
new LocalIsolationCoefficient<O>(distf, k).run(database, relation), out);
// Run VOV (requires a vector field).
if (TypeUtil.DOUBLE_VECTOR_FIELD.isAssignableFromType(relation.getDataTypeInformation())) {
@SuppressWarnings("unchecked") final DistanceFunction<? super DoubleVector> df = (DistanceFunction<? super DoubleVector>) distf;
@SuppressWarnings("unchecked") final Relation<DoubleVector> rel = (Relation<DoubleVector>) (Relation<?>) relation;
runForEachK(//
"VOV", //
startk, //
stepk, //
maxk, k -> //
new VarianceOfVolume<DoubleVector>(k, df).run(database, rel), out);
}
// Run KNN DD
runForEachK(//
"KNNDD", //
startk, //
stepk, //
maxk, k -> //
new KNNDD<O>(distf, k).run(database, relation), out);
// Run KNN SOS
runForEachK(//
"KNNSOS", //
startk, //
stepk, //
maxk, k -> //
new KNNSOS<O>(distf, k).run(relation), out);
// Run ISOS
runForEachK(//
"ISOS", //
startkmin2, //
stepk, //
maxk, k -> //
new ISOS<O>(distf, k, AggregatedHillEstimator.STATIC).run(relation), out);
} catch (FileNotFoundException e) {
throw new AbortException("Cannot create output file.", e);
}
}
Aggregations