use of edu.cmu.tetrad.util.CombinationGenerator in project tetrad by cmu-phil.
the class TestCombinationGenerator method test2.
@Test
public void test2() {
CombinationGenerator gen = new CombinationGenerator(new int[] { 2, 1 });
int count = 0;
while (gen.next() != null) {
count++;
}
assertEquals(2, count);
}
use of edu.cmu.tetrad.util.CombinationGenerator in project tetrad by cmu-phil.
the class TestCombinationGenerator method test3.
@Test
public void test3() {
CombinationGenerator gen = new CombinationGenerator(new int[] { 2, 3, 4 });
int count = 0;
while (gen.next() != null) {
count++;
}
assertEquals(24, count);
}
use of edu.cmu.tetrad.util.CombinationGenerator in project tetrad by cmu-phil.
the class Vcpc method search.
/**
* Runs PC starting with a fully connected graph over all of the variables in the domain of the independence test.
* See PC for caveats. The number of possible cycles and bidirected edges is far less with CPC than with PC.
*/
// public final Graph search() {
// return search(independenceTest.getVariable());
// }
// // public Graph search(List<Node> nodes) {
// //
// //// return search(new FasICov2(getIndependenceTest()), nodes);
// //// return search(new Fas(getIndependenceTest()), nodes);
// // return search(new Fas(getIndependenceTest()), nodes);
// }
// modified FAS into VCFAS; added in definitelyNonadjacencies set of edges.
public Graph search() {
this.logger.log("info", "Starting VCCPC algorithm");
final IndependenceTest independenceTest = getIndependenceTest();
this.logger.log("info", "Independence test = " + independenceTest + ".");
this.allTriples = new HashSet<>();
this.ambiguousTriples = new HashSet<>();
this.colliderTriples = new HashSet<>();
this.noncolliderTriples = new HashSet<>();
Vcfas fas = new Vcfas(independenceTest);
definitelyNonadjacencies = new HashSet<>();
markovInAllPatterns = new HashSet<>();
// this.logger.log("info", "Variables " + independenceTest.getVariable());
long startTime = System.currentTimeMillis();
if (independenceTest == null) {
throw new NullPointerException();
}
List<Node> allNodes = independenceTest.getVariables();
// if (!allNodes.containsAll(nodes)) {
// throw new IllegalArgumentException("All of the given nodes must " +
// "be in the domain of the independence test provided.");
// }
// Fas fas = new Fas(graph, getIndependenceTest());
// FasStableConcurrent fas = new FasStableConcurrent(graph, getIndependenceTest());
// Fas6 fas = new Fas6(graph, getIndependenceTest());
// fas = new FasICov(graph, (IndTestFisherZ) getIndependenceTest());
fas.setKnowledge(getKnowledge());
fas.setDepth(getDepth());
fas.setVerbose(verbose);
// Note that we are ignoring the sepset map returned by this method
// on purpose; it is not used in this search.
graph = fas.search();
apparentlyNonadjacencies = fas.getApparentlyNonadjacencies();
if (isDoOrientation()) {
if (verbose) {
System.out.println("CPC orientation...");
}
SearchGraphUtils.pcOrientbk(knowledge, graph, allNodes);
orientUnshieldedTriples(knowledge, independenceTest, getDepth());
// orientUnshieldedTriplesConcurrent(knowledge, getIndependenceTest(), getMaxIndegree());
MeekRules meekRules = new MeekRules();
meekRules.setAggressivelyPreventCycles(this.aggressivelyPreventCycles);
meekRules.setKnowledge(knowledge);
meekRules.orientImplied(graph);
}
List<Triple> ambiguousTriples = new ArrayList(graph.getAmbiguousTriples());
int[] dims = new int[ambiguousTriples.size()];
for (int i = 0; i < ambiguousTriples.size(); i++) {
dims[i] = 2;
}
// Pattern Search:
List<Graph> patterns = new ArrayList<>();
Map<Graph, List<Triple>> newColliders = new IdentityHashMap<>();
Map<Graph, List<Triple>> newNonColliders = new IdentityHashMap<>();
// Using combination generator to generate a list of combinations of ambiguous triples dismabiguated into colliders
// and non-colliders. The combinations are added as graphs to the list patterns. The graphs are then subject to
// basic rules to ensure consistent patterns.
CombinationGenerator generator = new CombinationGenerator(dims);
int[] combination;
while ((combination = generator.next()) != null) {
Graph _graph = new EdgeListGraph(graph);
newColliders.put(_graph, new ArrayList<Triple>());
newNonColliders.put(_graph, new ArrayList<Triple>());
for (Graph graph : newColliders.keySet()) {
// System.out.println("$$$ " + newColliders.get(graph));
}
for (int k = 0; k < combination.length; k++) {
// System.out.println("k = " + combination[k]);
Triple triple = ambiguousTriples.get(k);
_graph.removeAmbiguousTriple(triple.getX(), triple.getY(), triple.getZ());
if (combination[k] == 0) {
newColliders.get(_graph).add(triple);
// System.out.println(newColliders.get(_graph));
Node x = triple.getX();
Node y = triple.getY();
Node z = triple.getZ();
_graph.setEndpoint(x, y, Endpoint.ARROW);
_graph.setEndpoint(z, y, Endpoint.ARROW);
}
if (combination[k] == 1) {
newNonColliders.get(_graph).add(triple);
}
}
patterns.add(_graph);
}
List<Graph> _patterns = new ArrayList<>(patterns);
GRAPH: for (Graph graph : new ArrayList<>(patterns)) {
// _graph = new EdgeListGraph(graph);
// System.out.println("graph = " + graph + " in keyset? " + newColliders.containsKey(graph));
//
List<Triple> colliders = newColliders.get(graph);
List<Triple> nonColliders = newNonColliders.get(graph);
for (Triple triple : colliders) {
Node x = triple.getX();
Node y = triple.getY();
Node z = triple.getZ();
if (graph.getEdge(x, y).pointsTowards(x) || (graph.getEdge(y, z).pointsTowards(z))) {
patterns.remove(graph);
continue GRAPH;
}
}
for (Triple triple : colliders) {
Node x = triple.getX();
Node y = triple.getY();
Node z = triple.getZ();
graph.setEndpoint(x, y, Endpoint.ARROW);
graph.setEndpoint(z, y, Endpoint.ARROW);
}
for (Triple triple : nonColliders) {
Node x = triple.getX();
Node y = triple.getY();
Node z = triple.getZ();
if (graph.getEdge(x, y).pointsTowards(y)) {
graph.removeEdge(y, z);
graph.addDirectedEdge(y, z);
}
if (graph.getEdge(y, z).pointsTowards(y)) {
graph.removeEdge(x, y);
graph.addDirectedEdge(y, x);
}
}
for (Edge edge : graph.getEdges()) {
Node x = edge.getNode1();
Node y = edge.getNode2();
if (Edges.isBidirectedEdge(edge)) {
graph.removeEdge(x, y);
graph.addUndirectedEdge(x, y);
}
}
// for (Edge edge : graph.getEdges()) {
// if (Edges.isBidirectedEdge(edge)) {
// patterns.remove(graph);
// continue Graph;
// }
// }
MeekRules rules = new MeekRules();
rules.orientImplied(graph);
if (graph.existsDirectedCycle()) {
patterns.remove(graph);
continue GRAPH;
}
}
MARKOV: for (Edge edge : apparentlyNonadjacencies.keySet()) {
Node x = edge.getNode1();
Node y = edge.getNode2();
for (Graph _graph : new ArrayList<>(patterns)) {
List<Node> boundaryX = new ArrayList<>(boundary(x, _graph));
List<Node> boundaryY = new ArrayList<>(boundary(y, _graph));
List<Node> futureX = new ArrayList<>(future(x, _graph));
List<Node> futureY = new ArrayList<>(future(y, _graph));
if (y == x) {
continue;
}
if (boundaryX.contains(y) || boundaryY.contains(x)) {
continue;
}
IndependenceTest test = this.independenceTest;
if (!futureX.contains(y)) {
if (!test.isIndependent(x, y, boundaryX)) {
continue MARKOV;
}
}
if (!futureY.contains(x)) {
if (!test.isIndependent(y, x, boundaryY)) {
continue MARKOV;
}
}
}
definitelyNonadjacencies.add(edge);
// apparentlyNonadjacencies.remove(edge);
}
for (Edge edge : definitelyNonadjacencies) {
if (apparentlyNonadjacencies.keySet().contains(edge)) {
apparentlyNonadjacencies.keySet().remove(edge);
}
}
// Modified VCPC to be faster but less correct 4/14/15
// IndependenceTest test = independenceTest;
// //
// MARKOV:
// for (Edge edge : apparentlyNonadjacencies.keySet()) {
// Node x = edge.getNode1();
// Node y = edge.getNode2();
// // Build Power sets from boundary.
// powerSet = new HashSet<List<Node>>();
// Set<Node> ssX = new HashSet<Node>(boundary(x, graph));
// List<Node> listX = new ArrayList<Node>(ssX);
// buildPowerSet(listX, listX.size());
// Set<List<Node>> bdryX = powerSet;
// powerSet = new HashSet<List<Node>>();
// Set<Node> ssY = new HashSet<Node>(boundary(y, graph));
// List<Node> listY = new ArrayList<Node>(ssY);
// buildPowerSet(listY, listY.size());
// Set<List<Node>> bdryY = powerSet;
// for (List<Node> boundaryX : bdryX) {
// List<Node> futureX = new ArrayList<Node>(future(x, graph));
// if (y == x) {
// continue;
// }
// if (boundaryX.contains(y)) {
// continue;
// }
// if (!futureX.contains(y)) {
// if (!test.isIndependent(x, y, boundaryX)) {
// continue MARKOV;
// }
// }
// }
// for (List<Node> boundaryY : bdryY) {
// List<Node> futureX = new ArrayList<Node>(future(x, graph));
// List<Node> futureY = new ArrayList<Node>(future(y, graph));
// if (y == x) {
// continue;
// }
// if (boundaryY.contains(x)) {
// continue;
// }
// if (!futureY.contains(x)) {
// if (!test.isIndependent(y, x, boundaryY)) {
// continue MARKOV;
// }
// }
// }
// definitelyNonadjacencies.add(edge);
// // apparentlyNonadjacencies.remove(edge);
// }
// for (Edge edge : definitelyNonadjacencies) {
// if (apparentlyNonadjacencies.keySet().contains(edge)) {
// apparentlyNonadjacencies.keySet().remove(edge);
// }
// }
System.out.println("VCPC:");
// System.out.println("# of patterns: " + patterns.size());
long endTime = System.currentTimeMillis();
this.elapsedTime = endTime - startTime;
System.out.println("Search Time (seconds):" + (elapsedTime) / 1000 + " s");
System.out.println("Search Time (milli):" + elapsedTime + " ms");
System.out.println("# of Apparent Nonadj: " + apparentlyNonadjacencies.size());
System.out.println("# of Definite Nonadj: " + definitelyNonadjacencies.size());
// System.out.println("aMIGUOUS tRIPLES: " + ambiguousTriples);
// System.out.println("Definitely Nonadjacencies:");
// for (Edge edge : definitelyNonadjacencies) {
// System.out.println(edge);
// }
// System.out.println("markov in all patterns:" + markovInAllPatterns);
// // System.out.println("patterns:" + patterns);
// System.out.println("Apparently Nonadjacencies:");
// for (Edge edge : apparentlyNonadjacencies.keySet()) {
// System.out.println(edge);
// }
// System.out.println("Definitely Nonadjacencies:");
// for (Edge edge : definitelyNonadjacencies) {
// System.out.println(edge);
// }
TetradLogger.getInstance().log("apparentlyNonadjacencies", "\n Apparent Non-adjacencies" + apparentlyNonadjacencies);
TetradLogger.getInstance().log("definitelyNonadjacencies", "\n Definite Non-adjacencies" + definitelyNonadjacencies);
// TetradLogger.getInstance().log("patterns", "Disambiguated Patterns: " + patterns);
TetradLogger.getInstance().log("graph", "\nReturning this graph: " + graph);
TetradLogger.getInstance().log("info", "Elapsed time = " + (elapsedTime) / 1000. + " s");
TetradLogger.getInstance().log("info", "Finishing CPC algorithm.");
// logTriples();
TetradLogger.getInstance().flush();
// SearchGraphUtils.verifySepsetIntegrity(Map<Edge, List<Node>>, graph);
return graph;
}
use of edu.cmu.tetrad.util.CombinationGenerator in project tetrad by cmu-phil.
the class VcpcFast method search.
/**
* Runs PC starting with a fully connected graph over all of the variables in the domain of the independence test.
* See PC for caveats. The number of possible cycles and bidirected edges is far less with CPC than with PC.
*/
// public final Graph search() {
// return search(independenceTest.getVariable());
// }
// // public Graph search(List<Node> nodes) {
// //
// //// return search(new FasICov2(getIndependenceTest()), nodes);
// //// return search(new Fas(getIndependenceTest()), nodes);
// // return search(new Fas(getIndependenceTest()), nodes);
// }
// modified FAS into VCFAS; added in definitelyNonadjacencies set of edges.
public Graph search() {
this.logger.log("info", "Starting VCCPC algorithm");
this.logger.log("info", "Independence test = " + getIndependenceTest() + ".");
this.allTriples = new HashSet<>();
this.ambiguousTriples = new HashSet<>();
this.colliderTriples = new HashSet<>();
this.noncolliderTriples = new HashSet<>();
Vcfas fas = new Vcfas(getIndependenceTest());
definitelyNonadjacencies = new HashSet<>();
markovInAllPatterns = new HashSet<>();
// this.logger.log("info", "Variables " + independenceTest.getVariable());
long startTime = System.currentTimeMillis();
if (getIndependenceTest() == null) {
throw new NullPointerException();
}
List<Node> allNodes = getIndependenceTest().getVariables();
// if (!allNodes.containsAll(nodes)) {
// throw new IllegalArgumentException("All of the given nodes must " +
// "be in the domain of the independence test provided.");
// }
// Fas fas = new Fas(graph, getIndependenceTest());
// FasStableConcurrent fas = new FasStableConcurrent(graph, getIndependenceTest());
// Fas6 fas = new Fas6(graph, getIndependenceTest());
// fas = new FasICov(graph, (IndTestFisherZ) getIndependenceTest());
fas.setKnowledge(getKnowledge());
fas.setDepth(getDepth());
fas.setVerbose(verbose);
// Note that we are ignoring the sepset map returned by this method
// on purpose; it is not used in this search.
graph = fas.search();
apparentlyNonadjacencies = fas.getApparentlyNonadjacencies();
if (isDoOrientation()) {
if (verbose) {
System.out.println("CPC orientation...");
}
SearchGraphUtils.pcOrientbk(knowledge, graph, allNodes);
orientUnshieldedTriples(knowledge, getIndependenceTest(), getDepth());
// orientUnshieldedTriplesConcurrent(knowledge, getIndependenceTest(), getMaxIndegree());
MeekRules meekRules = new MeekRules();
meekRules.setAggressivelyPreventCycles(this.aggressivelyPreventCycles);
meekRules.setKnowledge(knowledge);
meekRules.orientImplied(graph);
}
List<Triple> ambiguousTriples = new ArrayList(graph.getAmbiguousTriples());
int[] dims = new int[ambiguousTriples.size()];
for (int i = 0; i < ambiguousTriples.size(); i++) {
dims[i] = 2;
}
// Pattern Search:
List<Graph> patterns = new ArrayList<>();
Map<Graph, List<Triple>> newColliders = new IdentityHashMap<>();
Map<Graph, List<Triple>> newNonColliders = new IdentityHashMap<>();
// Using combination generator to generate a list of combinations of ambiguous triples dismabiguated into colliders
// and non-colliders. The combinations are added as graphs to the list patterns. The graphs are then subject to
// basic rules to ensure consistent patterns.
CombinationGenerator generator = new CombinationGenerator(dims);
int[] combination;
while ((combination = generator.next()) != null) {
Graph _graph = new EdgeListGraph(graph);
newColliders.put(_graph, new ArrayList<Triple>());
newNonColliders.put(_graph, new ArrayList<Triple>());
for (Graph graph : newColliders.keySet()) {
// System.out.println("$$$ " + newColliders.get(graph));
}
for (int k = 0; k < combination.length; k++) {
// System.out.println("k = " + combination[k]);
Triple triple = ambiguousTriples.get(k);
_graph.removeAmbiguousTriple(triple.getX(), triple.getY(), triple.getZ());
if (combination[k] == 0) {
newColliders.get(_graph).add(triple);
// System.out.println(newColliders.get(_graph));
Node x = triple.getX();
Node y = triple.getY();
Node z = triple.getZ();
_graph.setEndpoint(x, y, Endpoint.ARROW);
_graph.setEndpoint(z, y, Endpoint.ARROW);
}
if (combination[k] == 1) {
newNonColliders.get(_graph).add(triple);
}
}
patterns.add(_graph);
}
List<Graph> _patterns = new ArrayList<>(patterns);
GRAPH: for (Graph graph : new ArrayList<>(patterns)) {
// _graph = new EdgeListGraph(graph);
// System.out.println("graph = " + graph + " in keyset? " + newColliders.containsKey(graph));
//
List<Triple> colliders = newColliders.get(graph);
List<Triple> nonColliders = newNonColliders.get(graph);
for (Triple triple : colliders) {
Node x = triple.getX();
Node y = triple.getY();
Node z = triple.getZ();
if (graph.getEdge(x, y).pointsTowards(x) || (graph.getEdge(y, z).pointsTowards(z))) {
patterns.remove(graph);
continue GRAPH;
}
}
for (Triple triple : colliders) {
Node x = triple.getX();
Node y = triple.getY();
Node z = triple.getZ();
graph.setEndpoint(x, y, Endpoint.ARROW);
graph.setEndpoint(z, y, Endpoint.ARROW);
}
for (Triple triple : nonColliders) {
Node x = triple.getX();
Node y = triple.getY();
Node z = triple.getZ();
if (graph.getEdge(x, y).pointsTowards(y)) {
graph.removeEdge(y, z);
graph.addDirectedEdge(y, z);
}
if (graph.getEdge(y, z).pointsTowards(y)) {
graph.removeEdge(x, y);
graph.addDirectedEdge(y, x);
}
}
for (Edge edge : graph.getEdges()) {
Node x = edge.getNode1();
Node y = edge.getNode2();
if (Edges.isBidirectedEdge(edge)) {
graph.removeEdge(x, y);
graph.addUndirectedEdge(x, y);
}
}
// for (Edge edge : graph.getEdges()) {
// if (Edges.isBidirectedEdge(edge)) {
// patterns.remove(graph);
// continue Graph;
// }
// }
MeekRules rules = new MeekRules();
rules.orientImplied(graph);
if (graph.existsDirectedCycle()) {
patterns.remove(graph);
continue GRAPH;
}
}
MARKOV: for (Edge edge : apparentlyNonadjacencies.keySet()) {
Node x = edge.getNode1();
Node y = edge.getNode2();
for (Graph _graph : new ArrayList<>(patterns)) {
List<Node> boundaryX = new ArrayList<>(boundary(x, _graph));
List<Node> boundaryY = new ArrayList<>(boundary(y, _graph));
List<Node> futureX = new ArrayList<>(future(x, _graph));
List<Node> futureY = new ArrayList<>(future(y, _graph));
if (y == x) {
continue;
}
if (boundaryX.contains(y) || boundaryY.contains(x)) {
continue;
}
IndependenceTest test = independenceTest;
if (!futureX.contains(y)) {
if (!test.isIndependent(x, y, boundaryX)) {
continue MARKOV;
}
}
if (!futureY.contains(x)) {
if (!test.isIndependent(y, x, boundaryY)) {
continue MARKOV;
}
}
}
definitelyNonadjacencies.add(edge);
// apparentlyNonadjacencies.remove(edge);
}
for (Edge edge : definitelyNonadjacencies) {
if (apparentlyNonadjacencies.keySet().contains(edge)) {
apparentlyNonadjacencies.keySet().remove(edge);
}
}
// Modified VCPC to be faster but less correct 4/14/15
// IndependenceTest test = independenceTest;
// //
// MARKOV:
// for (Edge edge : apparentlyNonadjacencies.keySet()) {
// Node x = edge.getNode1();
// Node y = edge.getNode2();
// // Build Power sets from boundary.
// powerSet = new HashSet<List<Node>>();
// Set<Node> ssX = new HashSet<Node>(boundary(x, graph));
// List<Node> listX = new ArrayList<Node>(ssX);
// buildPowerSet(listX, listX.size());
// Set<List<Node>> bdryX = powerSet;
// powerSet = new HashSet<List<Node>>();
// Set<Node> ssY = new HashSet<Node>(boundary(y, graph));
// List<Node> listY = new ArrayList<Node>(ssY);
// buildPowerSet(listY, listY.size());
// Set<List<Node>> bdryY = powerSet;
// for (List<Node> boundaryX : bdryX) {
// List<Node> futureX = new ArrayList<Node>(future(x, graph));
// if (y == x) {
// continue;
// }
// if (boundaryX.contains(y)) {
// continue;
// }
// if (!futureX.contains(y)) {
// if (!test.isIndependent(x, y, boundaryX)) {
// continue MARKOV;
// }
// }
// }
// for (List<Node> boundaryY : bdryY) {
// List<Node> futureX = new ArrayList<Node>(future(x, graph));
// List<Node> futureY = new ArrayList<Node>(future(y, graph));
// if (y == x) {
// continue;
// }
// if (boundaryY.contains(x)) {
// continue;
// }
// if (!futureY.contains(x)) {
// if (!test.isIndependent(y, x, boundaryY)) {
// continue MARKOV;
// }
// }
// }
// definitelyNonadjacencies.add(edge);
// // apparentlyNonadjacencies.remove(edge);
// }
// for (Edge edge : definitelyNonadjacencies) {
// if (apparentlyNonadjacencies.keySet().contains(edge)) {
// apparentlyNonadjacencies.keySet().remove(edge);
// }
// }
System.out.println("VCPC:");
// System.out.println("# of patterns: " + patterns.size());
long endTime = System.currentTimeMillis();
this.elapsedTime = endTime - startTime;
System.out.println("Search Time (seconds):" + (elapsedTime) / 1000 + " s");
System.out.println("Search Time (milli):" + elapsedTime + " ms");
System.out.println("# of Apparent Nonadj: " + apparentlyNonadjacencies.size());
System.out.println("# of Definite Nonadj: " + definitelyNonadjacencies.size());
// System.out.println("aMIGUOUS tRIPLES: " + ambiguousTriples);
// System.out.println("Definitely Nonadjacencies:");
// for (Edge edge : definitelyNonadjacencies) {
// System.out.println(edge);
// }
// System.out.println("markov in all patterns:" + markovInAllPatterns);
// // System.out.println("patterns:" + patterns);
// System.out.println("Apparently Nonadjacencies:");
// for (Edge edge : apparentlyNonadjacencies.keySet()) {
// System.out.println(edge);
// }
// System.out.println("Definitely Nonadjacencies:");
// for (Edge edge : definitelyNonadjacencies) {
// System.out.println(edge);
// }
TetradLogger.getInstance().log("apparentlyNonadjacencies", "\n Apparent Non-adjacencies" + apparentlyNonadjacencies);
TetradLogger.getInstance().log("definitelyNonadjacencies", "\n Definite Non-adjacencies" + definitelyNonadjacencies);
// TetradLogger.getInstance().log("patterns", "Disambiguated Patterns: " + patterns);
TetradLogger.getInstance().log("graph", "\nReturning this graph: " + graph);
TetradLogger.getInstance().log("info", "Elapsed time = " + (elapsedTime) / 1000. + " s");
TetradLogger.getInstance().log("info", "Finishing CPC algorithm.");
// logTriples();
TetradLogger.getInstance().flush();
// SearchGraphUtils.verifySepsetIntegrity(Map<Edge, List<Node>>, graph);
return graph;
}
use of edu.cmu.tetrad.util.CombinationGenerator in project tetrad by cmu-phil.
the class TimeoutComparison method getSimulationWrappers.
private List<SimulationWrapper> getSimulationWrappers(Simulation simulation, Parameters parameters) {
List<SimulationWrapper> simulationWrappers = new ArrayList<>();
List<Integer> _dims = new ArrayList<>();
List<String> varyingParams = new ArrayList<>();
final List<String> parameters1 = simulation.getParameters();
for (String param : parameters1) {
final int numValues = parameters.getNumValues(param);
if (numValues > 1) {
_dims.add(numValues);
varyingParams.add(param);
}
}
if (varyingParams.isEmpty()) {
simulationWrappers.add(new SimulationWrapper(simulation, parameters));
} else {
int[] dims = new int[_dims.size()];
for (int i = 0; i < _dims.size(); i++) {
dims[i] = _dims.get(i);
}
CombinationGenerator gen = new CombinationGenerator(dims);
int[] choice;
while ((choice = gen.next()) != null) {
SimulationWrapper wrapper = new SimulationWrapper(simulation, parameters);
for (int h = 0; h < dims.length; h++) {
String param = varyingParams.get(h);
Object[] values = parameters.getValues(param);
Object value = values[choice[h]];
wrapper.setValue(param, value);
}
simulationWrappers.add(wrapper);
}
}
return simulationWrappers;
}
Aggregations