use of edu.cmu.tetrad.util.TetradMatrix in project tetrad by cmu-phil.
the class CovMatrixSumWrapper method calcSum.
// public CovMatrixSumWrapper(SemEstimatorWrapper wrapper1, DataWrapper wrapper2) {
// if (wrapper1 == null || wrapper2 == null) {
// throw new NullPointerException("The data must not be null");
// }
//
// DataModel model2 = wrapper2.getSelectedDataModel();
//
// if (!(model2 instanceof ICovarianceMatrix)) {
// throw new IllegalArgumentException("Expecting corrariance matrices.");
// }
//
// TetradMatrix corr1 = wrapper1.getEstimatedSemIm().getImplCovarMeas();
// TetradMatrix corr2 = ((ICovarianceMatrix) model2).getMatrix();
//
// TetradMatrix corr3 = calcSum(corr1, corr2);
//
// ICovarianceMatrix corrWrapper = new CovarianceMatrix(model2.getVariable(), corr3,
// ((ICovarianceMatrix) model2).getSampleSize());
//
// setDataModel(corrWrapper);
// setSourceGraph(wrapper2.getSourceGraph());
// LogDataUtils.logDataModelList("Difference of matrices.", getDataModelList());
//
// }
// public CovMatrixSumWrapper(SemImWrapper wrapper1, DataWrapper wrapper2) {
// try {
// if (wrapper1 == null || wrapper2 == null) {
// throw new NullPointerException("The data must not be null");
// }
//
// DataModel model2 = wrapper2.getSelectedDataModel();
//
// if (!(model2 instanceof ICovarianceMatrix)) {
// throw new IllegalArgumentException("Expecting corrariance matrices.");
// }
//
// TetradMatrix corr1 = wrapper1.getSemIm().getImplCovarMeas();
// TetradMatrix corr2 = ((ICovarianceMatrix) model2).getMatrix();
//
// TetradMatrix corr3 = calcSum(corr1, corr2);
//
// ICovarianceMatrix corrWrapper = new CovarianceMatrix(model2.getVariable(), corr3,
// ((ICovarianceMatrix) model2).getSampleSize());
//
// setDataModel(corrWrapper);
// setSourceGraph(wrapper2.getSourceGraph());
// LogDataUtils.logDataModelList("Difference of matrices.", getDataModelList());
// } catch (Exception e) {
// e.printStackTrace();
// throw new RuntimeException(e);
// }
//
// }
private TetradMatrix calcSum(TetradMatrix corr1, TetradMatrix corr2) {
if (corr1.rows() != corr2.rows()) {
throw new IllegalArgumentException("Covariance matrices must be the same size.");
}
TetradMatrix corr3 = new TetradMatrix(corr2.rows(), corr2.rows());
for (int i = 0; i < corr3.rows(); i++) {
for (int j = 0; j < corr3.rows(); j++) {
double v = corr1.get(i, j) + corr2.get(i, j);
corr3.set(i, j, v);
corr3.set(j, i, v);
}
}
return corr3;
}
use of edu.cmu.tetrad.util.TetradMatrix in project tetrad by cmu-phil.
the class SubsetSelectedVariablesWrapper method createCovarianceModel.
private static DataModel createCovarianceModel(ICovarianceMatrix data) {
int numSelected = 0;
for (Node node : data.getVariables()) {
if (data.isSelected(node)) {
numSelected++;
}
}
int[] selectedIndices = new int[numSelected];
String[] nodeNames = new String[numSelected];
int index = -1;
for (int i = 0; i < data.getVariables().size(); i++) {
Node node = data.getVariables().get(i);
if (data.isSelected(node)) {
++index;
selectedIndices[index] = i;
nodeNames[index] = node.getName();
}
}
TetradMatrix matrix = data.getMatrix();
TetradMatrix newMatrix = matrix.getSelection(selectedIndices, selectedIndices).copy();
ICovarianceMatrix newCov = new CovarianceMatrix(DataUtils.createContinuousVariables(nodeNames), newMatrix, matrix.rows());
return newCov;
}
use of edu.cmu.tetrad.util.TetradMatrix in project tetrad by cmu-phil.
the class FastIca method findComponents.
/**
* Runs the Fast ICA algorithm (following the R version) and returns the
* list of result items that the R version returns.
*
* @return this list, as an FastIca.IcaResult object.
*/
public IcaResult findComponents() {
int n = X.rows();
int p = X.columns();
if (numComponents > Math.min(n, p)) {
TetradLogger.getInstance().log("info", "Requested number of components is too large.");
TetradLogger.getInstance().log("info", "Reset to " + Math.min(n, p));
numComponents = Math.min(n, p);
}
if (wInit == null) {
wInit = new TetradMatrix(numComponents, numComponents);
for (int i = 0; i < wInit.rows(); i++) {
for (int j = 0; j < wInit.columns(); j++) {
wInit.set(i, j, RandomUtil.getInstance().nextNormal(0, 1));
}
}
} else if (wInit.rows() != wInit.columns()) {
throw new IllegalArgumentException("wInit is the wrong size.");
}
if (verbose) {
TetradLogger.getInstance().log("info", "Centering");
}
X = center(X);
if (colNorm) {
X = scale(X);
}
X = X.transpose();
if (verbose) {
TetradLogger.getInstance().log("info", "Whitening");
}
TetradMatrix V = X.times(X.transpose()).scalarMult(1.0 / n);
// v.scalarMult(1.0 / n);
SingularValueDecomposition s = new SingularValueDecomposition(V.getRealMatrix());
TetradMatrix D = new TetradMatrix(s.getS());
TetradMatrix U = new TetradMatrix(s.getU());
for (int i = 0; i < D.rows(); i++) {
D.set(i, i, 1.0 / Math.sqrt(D.get(i, i)));
}
TetradMatrix K = D.times(U.transpose());
// This SVD gives -U from R's SVD.
K = K.scalarMult(-1);
K = K.getPart(0, numComponents - 1, 0, p - 1);
TetradMatrix X1 = K.times(X);
TetradMatrix b;
if (algorithmType == DEFLATION) {
b = icaDeflation(X1, numComponents, tolerance, function, alpha, maxIterations, verbose, wInit);
} else if (algorithmType == PARALLEL) {
b = icaParallel(X1, numComponents, tolerance, function, alpha, maxIterations, verbose, wInit);
} else {
throw new IllegalStateException();
}
TetradMatrix w = b.times(K);
TetradMatrix S = w.times(X);
TetradMatrix A = w.transpose().times(w.times(w.transpose()).inverse());
return new IcaResult(X.transpose(), K.transpose(), b.transpose(), A.transpose(), S.transpose());
}
use of edu.cmu.tetrad.util.TetradMatrix in project tetrad by cmu-phil.
the class FastIca method icaDeflation.
// ==============================PRIVATE METHODS==========================//
private TetradMatrix icaDeflation(TetradMatrix X, int numComponents, double tolerance, int function, double alpha, int maxIterations, boolean verbose, TetradMatrix wInit) {
if (verbose && function == LOGCOSH) {
TetradLogger.getInstance().log("info", "Deflation FastIca using lgcosh approx. to neg-entropy function");
}
if (verbose && function == EXP) {
TetradLogger.getInstance().log("info", "Deflation FastIca using exponential approx. to neg-entropy function");
}
int p = X.columns();
TetradMatrix W = new TetradMatrix(numComponents, numComponents);
for (int i = 0; i < numComponents; i++) {
if (verbose) {
TetradLogger.getInstance().log("fastIcaDetails", "Component " + (i + 1));
}
TetradVector w = wInit.getRow(i);
if (i > 0) {
TetradVector t = w.like();
for (int u = 0; u < i; u++) {
double k = 0.0;
for (int j = 0; j < numComponents; j++) {
k += w.get(j) * W.get(u, j);
}
for (int j = 0; j < numComponents; j++) {
t.set(j, t.get(j) + k * W.get(u, j));
}
}
for (int j = 0; j < numComponents; j++) {
w.set(j, w.get(j) - t.get(j));
}
}
double rms = rms(w);
for (int j = 0; j < numComponents; j++) {
w.set(j, w.get(j) / rms);
}
int it = 0;
double _tolerance = Double.POSITIVE_INFINITY;
if (function == LOGCOSH) {
while (_tolerance > tolerance && ++it <= maxIterations) {
TetradVector wx = X.transpose().times(w);
TetradVector gwx0 = new TetradVector(p);
for (int j = 0; j < p; j++) {
gwx0.set(j, Math.tanh(alpha * wx.get(j)));
}
TetradMatrix gwx = new TetradMatrix(numComponents, p);
for (int _i = 0; _i < numComponents; _i++) {
for (int j = 0; j < p; j++) {
gwx.set(_i, j, gwx0.get(j));
}
}
TetradMatrix xgwx = new TetradMatrix(numComponents, p);
for (int _i = 0; _i < numComponents; _i++) {
for (int j = 0; j < p; j++) {
xgwx.set(_i, j, X.get(_i, j) * gwx0.get(j));
}
}
TetradVector v1 = new TetradVector(numComponents);
for (int k = 0; k < numComponents; k++) {
v1.set(k, mean(xgwx.getRow(k)));
}
TetradVector g_wx = new TetradVector(p);
for (int k = 0; k < p; k++) {
double tmp1 = Math.tanh(alpha * wx.get(k));
g_wx.set(k, alpha * (1.0 - tmp1 * tmp1));
}
TetradVector v2 = w.copy();
double meanGwx = mean(g_wx);
v2 = v2.scalarMult(meanGwx);
TetradVector w1 = v1.copy();
// w1.assign(v2, PlusMult.plusMult(-1));
w1 = w1.minus(v2);
if (i > 0) {
TetradVector t = w1.like();
for (int u = 0; u < i; u++) {
double k = 0.0;
for (int j = 0; j < numComponents; j++) {
k += w1.get(j) * W.get(u, j);
}
for (int j = 0; j < numComponents; j++) {
t.set(j, t.get(j) + k * W.get(u, j));
}
}
for (int j = 0; j < numComponents; j++) {
w1.set(j, w1.get(j) - t.get(j));
}
}
double _rms = rms(w1);
for (int k = 0; k < numComponents; k++) {
w1.set(k, w1.get(k) / _rms);
}
_tolerance = 0.0;
for (int k = 0; k < numComponents; k++) {
_tolerance += w1.get(k) * w.get(k);
}
_tolerance = Math.abs(Math.abs(_tolerance) - 1.0);
if (verbose) {
TetradLogger.getInstance().log("fastIcaDetails", "Iteration " + it + " tol = " + _tolerance);
}
w = w1;
}
} else if (function == EXP) {
while (_tolerance > tolerance && ++it <= maxIterations) {
TetradVector wx = X.transpose().times(w);
TetradVector gwx0 = new TetradVector(p);
for (int j = 0; j < p; j++) {
gwx0.set(j, wx.get(j) * Math.exp(-(wx.get(j) * wx.get(j)) / 2));
}
TetradMatrix gwx = new TetradMatrix(numComponents, p);
for (int _i = 0; _i < numComponents; _i++) {
for (int j = 0; j < p; j++) {
gwx.set(_i, j, gwx0.get(j));
}
}
TetradMatrix xgwx = new TetradMatrix(numComponents, p);
for (int _i = 0; _i < numComponents; _i++) {
for (int j = 0; j < p; j++) {
xgwx.set(_i, j, X.get(_i, j) * gwx0.get(j));
}
}
TetradVector v1 = new TetradVector(numComponents);
for (int k = 0; k < numComponents; k++) {
v1.set(k, mean(xgwx.getRow(k)));
}
TetradVector g_wx = new TetradVector(p);
for (int j = 0; j < p; j++) {
g_wx.set(j, (1.0 - wx.get(j) * wx.get(j)) * Math.exp(-(wx.get(j) * wx.get(j)) / 2));
}
TetradVector v2 = w.copy();
double meanGwx = mean(g_wx);
TetradVector w1 = v2.scalarMult(meanGwx).minus(v2);
if (i > 0) {
TetradVector t = w1.like();
for (int u = 0; u < i; u++) {
double k = 0.0;
for (int j = 0; j < numComponents; j++) {
k += w1.get(j) * W.get(u, j);
}
for (int j = 0; j < numComponents; j++) {
t.set(j, t.get(j) + k * W.get(u, j));
}
}
for (int j = 0; j < numComponents; j++) {
w1.set(j, w1.get(j) - t.get(j));
}
}
double _rms = rms(w1);
for (int k = 0; k < numComponents; k++) {
w1.set(k, w1.get(k) / _rms);
}
_tolerance = 0.0;
for (int k = 0; k < numComponents; k++) {
_tolerance += w1.get(k) * w.get(k);
}
_tolerance = Math.abs(Math.abs(_tolerance) - 1.0);
if (verbose) {
TetradLogger.getInstance().log("fastIcaDetails", "Iteration " + it + " tol = " + _tolerance);
}
w = w1;
}
}
W.assignRow(i, w);
}
return W;
}
use of edu.cmu.tetrad.util.TetradMatrix in project tetrad by cmu-phil.
the class DeltaTetradTest2 method calcChiSquare.
/**
* Takes a list of tetrads for the given data set and returns the chi square value for the test. We assume that the
* tetrads are non-redundant; if not, a matrix exception will be thrown.
* <p>
* Calculates the T statistic (Bollen and Ting, p. 161). This is significant if tests as significant using the Chi
* Square distribution with degrees of freedom equal to the number of nonredundant tetrads tested.
*/
public double calcChiSquare(Tetrad... tetrads) {
this.df = tetrads.length;
// Need a list of symbolic covariances--i.e. covariances that appear in tetrads.
Set<Sigma> boldSigmaSet = new LinkedHashSet<>();
List<Sigma> boldSigma = new ArrayList<>();
for (Tetrad tetrad : tetrads) {
boldSigmaSet.add(new Sigma(tetrad.getI(), tetrad.getK()));
boldSigmaSet.add(new Sigma(tetrad.getI(), tetrad.getL()));
boldSigmaSet.add(new Sigma(tetrad.getJ(), tetrad.getK()));
boldSigmaSet.add(new Sigma(tetrad.getJ(), tetrad.getL()));
}
for (Sigma sigma : boldSigmaSet) {
boldSigma.add(sigma);
}
// Need a matrix of variances and covariances of sample covariances.
TetradMatrix sigma_ss = new TetradMatrix(boldSigma.size(), boldSigma.size());
for (int i = 0; i < boldSigma.size(); i++) {
for (int j = 0; j < boldSigma.size(); j++) {
Sigma sigmaef = boldSigma.get(i);
Sigma sigmagh = boldSigma.get(j);
Node e = sigmaef.getA();
Node f = sigmaef.getB();
Node g = sigmagh.getA();
Node h = sigmagh.getB();
if (cov != null && cov instanceof CorrelationMatrix) {
// Assumes multinormality. Using formula 23. (Not implementing formula 22 because that case
// does not come up.)
double rr = 0.5 * (sxy(e, f) * sxy(g, h)) * (sxy(e, g) * sxy(e, g) + sxy(e, h) * sxy(e, h) + sxy(f, g) * sxy(f, g) + sxy(f, h) * sxy(f, h)) + sxy(e, g) * sxy(f, h) + sxy(e, h) * sxy(f, g) - sxy(e, f) * (sxy(f, g) * sxy(f, h) + sxy(e, g) * sxy(e, h)) - sxy(g, h) * (sxy(f, g) * sxy(e, g) + sxy(f, h) * sxy(e, h));
sigma_ss.set(i, j, rr);
} else if (cov != null && dataSet == null) {
// Assumes multinormality--see p. 160.
// + or -? Different advise. + in the code.
double _ss = sxy(e, g) * sxy(f, h) - sxy(e, h) * sxy(f, g);
sigma_ss.set(i, j, _ss);
} else {
double _ss = sxyzw(e, f, g, h) - sxy(e, f) * sxy(g, h);
sigma_ss.set(i, j, _ss);
}
}
}
// Need a matrix of of population estimates of partial derivatives of tetrads
// with respect to covariances in boldSigma.w
TetradMatrix del = new TetradMatrix(boldSigma.size(), tetrads.length);
for (int i = 0; i < boldSigma.size(); i++) {
for (int j = 0; j < tetrads.length; j++) {
Sigma sigma = boldSigma.get(i);
Tetrad tetrad = tetrads[j];
Node e = tetrad.getI();
Node f = tetrad.getJ();
Node g = tetrad.getK();
Node h = tetrad.getL();
double derivative = getDerivative(e, f, g, h, sigma.getA(), sigma.getB());
del.set(i, j, derivative);
}
}
// Need a vector of population estimates of the tetrads.
TetradMatrix t = new TetradMatrix(tetrads.length, 1);
for (int i = 0; i < tetrads.length; i++) {
Tetrad tetrad = tetrads[i];
Node e = tetrad.getI();
Node f = tetrad.getJ();
Node g = tetrad.getK();
Node h = tetrad.getL();
double d1 = sxy(e, f);
double d2 = sxy(g, h);
double d3 = sxy(e, g);
double d4 = sxy(f, h);
double value = d1 * d2 - d3 * d4;
t.set(i, 0, value);
}
// Now multiply to get Sigma_tt
TetradMatrix w1 = del.transpose().times(sigma_ss);
TetradMatrix sigma_tt = w1.times(del);
// And now invert and multiply to get T.
TetradMatrix v0 = sigma_tt.inverse();
TetradMatrix v1 = t.transpose().times(v0);
TetradMatrix v2 = v1.times(t);
double chisq = N * v2.get(0, 0);
this.chisq = chisq;
return chisq;
}
Aggregations