use of ffx.numerics.ComplexNumber in project ffx by mjschnie.
the class CrystalReciprocalSpace method computeAtomicGradients.
/**
* compute inverse FFT to determine atomic gradients
*
* @param hklData structure factors to apply inverse FFT
* @param freer array of free r flags corresponding to hkldata
* @param flag Rfree flag value
* @param refinementMode
* {@link RefinementMinimize.RefinementMode refinement mode}
* @param print if true, print information on timings during the calculation
* @see RefinementMinimize.RefinementMode
* @see DiffractionRefinementData
*/
public void computeAtomicGradients(double[][] hklData, int[] freer, int flag, RefinementMode refinementMode, boolean print) {
if (solvent && solventModel == SolventModel.NONE) {
return;
}
// zero out the density
for (int i = 0; i < complexFFT3DSpace; i++) {
densityGrid[i] = 0.0;
}
int nfree = 0;
StringBuilder sb = new StringBuilder();
long symtime = -System.nanoTime();
int nsym = crystal.spaceGroup.symOps.size();
// int nsym = 1;
List<SymOp> symops = crystal.spaceGroup.symOps;
ComplexNumber c = new ComplexNumber();
ComplexNumber cj = new ComplexNumber();
HKL ij = new HKL();
for (HKL ih : reflectionList.hkllist) {
double[] fc = hklData[ih.index()];
if (Double.isNaN(fc[0])) {
continue;
}
// cross validation check!!!
if (freer != null) {
if (freer[ih.index()] == flag) {
nfree++;
continue;
}
}
c.re(fc[0]);
c.im(fc[1]);
// scale
c.timesIP(2.0 / fftScale);
// apply symmetry
for (int j = 0; j < nsym; j++) {
cj.copy(c);
crystal.applyTransSymRot(ih, ij, symops.get(j));
double shift = Crystal.sym_phase_shift(ih, symops.get(j));
int h = Crystal.mod(ij.h(), fftX);
int k = Crystal.mod(ij.k(), fftY);
int l = Crystal.mod(ij.l(), fftZ);
if (h < halfFFTX + 1) {
final int ii = iComplex3D(h, k, l, fftX, fftY);
cj.phaseShiftIP(shift);
densityGrid[ii] += cj.re();
densityGrid[ii + 1] += -cj.im();
} else {
h = (fftX - h) % fftX;
k = (fftY - k) % fftY;
l = (fftZ - l) % fftZ;
final int ii = iComplex3D(h, k, l, fftX, fftY);
cj.phaseShiftIP(shift);
densityGrid[ii] += cj.re();
densityGrid[ii + 1] += cj.im();
}
}
}
symtime += System.nanoTime();
long startTime = System.nanoTime();
complexFFT3D.ifft(densityGrid);
long fftTime = System.nanoTime() - startTime;
/*
CCP4MapWriter mapout = new CCP4MapWriter(fftX, fftY, fftZ, crystal, "/tmp/foo.map");
mapout.write(densityGrid);
*/
startTime = System.nanoTime();
long permanentDensityTime = 0;
try {
if (solvent) {
solventGradientRegion.setRefinementMode(refinementMode);
parallelTeam.execute(solventGradientRegion);
} else {
for (int i = 0; i < nAtoms; i++) {
optAtomicGradientWeight.set(i, 0);
}
atomicGradientSchedule.updateWeights(previousOptAtomicGradientWeight);
atomicGradientRegion.setRefinementMode(refinementMode);
parallelTeam.execute(atomicGradientRegion);
for (int i = 0; i < nAtoms; i++) {
previousOptAtomicGradientWeight[i] = optAtomicGradientWeight.get(i);
}
}
permanentDensityTime = System.nanoTime() - startTime;
} catch (Exception e) {
String message = "Exception computing atomic gradients.";
logger.log(Level.SEVERE, message, e);
}
if (solvent) {
sb.append(String.format(" Solvent symmetry: %8.3f\n", symtime * toSeconds));
sb.append(String.format(" Solvent inverse FFT: %8.3f\n", fftTime * toSeconds));
sb.append(String.format(" Grid solvent gradients: %8.3f\n", permanentDensityTime * toSeconds));
sb.append(String.format(" %d reflections ignored (cross validation set)\n", nfree));
} else {
sb.append(String.format(" Atomic symmetry: %8.3f\n", symtime * toSeconds));
sb.append(String.format(" Atomic inverse FFT: %8.3f\n", fftTime * toSeconds));
sb.append(String.format(" Grid atomic gradients: %8.3f\n", permanentDensityTime * toSeconds));
sb.append(String.format(" %d reflections ignored (cross validation set)\n", nfree));
}
if (logger.isLoggable(Level.INFO) && print) {
logger.info(sb.toString());
}
}
use of ffx.numerics.ComplexNumber in project ffx by mjschnie.
the class CrystalStats method printRStats.
/**
* print R factors and associated statistics in a binned fashion
*/
public void printRStats() {
double[][] res = new double[n][2];
double[] nhkl = new double[n + 1];
double[][] rb = new double[n + 1][2];
double[][] sumfo = new double[n + 1][2];
double[][] s = new double[n + 1][4];
double numer = 0.0;
double denom = 0.0;
double sumall = 0.0;
double sumfoall = 0.0;
ReflectionSpline sigmaaspline = new ReflectionSpline(reflectionlist, refinementdata.sigmaa.length);
for (int i = 0; i < n; i++) {
res[i][0] = Double.NEGATIVE_INFINITY;
res[i][1] = Double.POSITIVE_INFINITY;
}
for (HKL ih : reflectionlist.hkllist) {
int i = ih.index();
int b = ih.bin();
// ignored cases
if (Double.isNaN(fc[i][0]) || Double.isNaN(fo[i][0]) || fo[i][1] <= 0.0) {
continue;
}
// spline setup
double ss = Crystal.invressq(crystal, ih);
double fh = spline.f(ss, refinementdata.spline);
double sa = sigmaaspline.f(ss, refinementdata.sigmaa);
double wa = sigmaaspline.f(ss, refinementdata.sigmaw);
double eoscale = sigmaaspline.f(ss, refinementdata.foesq);
// determine res limits of each bin
double rs = Crystal.res(crystal, ih);
if (rs > res[b][0]) {
res[b][0] = rs;
}
if (rs < res[b][1]) {
res[b][1] = rs;
}
ComplexNumber c = new ComplexNumber(fc[i][0], fc[i][1]);
numer = abs(abs(fo[i][0]) - fh * abs(c.abs()));
denom = abs(fo[i][0]);
if (refinementdata.isFreeR(i)) {
rb[b][1] += numer;
sumfo[b][1] += denom;
rb[n][1] += numer;
sumfo[n][1] += denom;
sumall += numer;
sumfoall += denom;
} else {
rb[b][0] += numer;
sumfo[b][0] += denom;
rb[n][0] += numer;
sumfo[n][0] += denom;
sumall += numer;
sumfoall += denom;
}
nhkl[b]++;
nhkl[n]++;
s[b][0] += (sa - s[b][0]) / nhkl[b];
s[b][1] += (wa - s[b][1]) / nhkl[b];
s[b][2] += ((wa / Math.sqrt(eoscale)) - s[b][2]) / nhkl[b];
s[b][3] += (fomphi[i][0] - s[b][3]) / nhkl[b];
s[n][0] += (sa - s[n][0]) / nhkl[n];
s[n][1] += (wa - s[n][1]) / nhkl[n];
s[n][2] += ((wa / Math.sqrt(eoscale)) - s[n][2]) / nhkl[n];
s[n][3] += (fomphi[i][0] - s[n][3]) / nhkl[n];
}
StringBuilder sb = new StringBuilder(String.format("\n %15s | %7s | %7s | %7s | %7s | %7s | %7s\n", "Res. Range", " R", "Rfree", "s", "w(E)", "w(F)", "FOM"));
for (int i = 0; i < n; i++) {
sb.append(String.format(" %7.3f %7.3f | ", res[i][0], res[i][1]));
sb.append(String.format("%7.2f | %7.2f | %7.4f | %7.4f | %7.2f | %7.4f\n", (rb[i][0] / sumfo[i][0]) * 100.0, (rb[i][1] / sumfo[i][1]) * 100.0, s[i][0], s[i][1], s[i][2], s[i][3]));
}
sb.append(String.format(" %7.3f %7.3f | ", res[0][0], res[n - 1][1]));
sb.append(String.format("%7.2f | %7.2f | %7.4f | %7.4f | %7.2f | %7.4f\n", (rb[n][0] / sumfo[n][0]) * 100.0, (rb[n][1] / sumfo[n][1]) * 100.0, s[n][0], s[n][1], s[n][2], s[n][3]));
sb.append(" s and w are analagous to D and sum_wc");
reslow = res[0][0];
reshigh = res[n - 1][1];
highreslow = res[n - 1][0];
highreshigh = res[n - 1][1];
r = (rb[n][0] / sumfo[n][0]) * 100.0;
rfree = (rb[n][1] / sumfo[n][1]) * 100.0;
rall = (sumall / sumfoall) * 100.0;
highr = (rb[n - 1][0] / sumfo[n - 1][0]) * 100.0;
highrfree = (rb[n - 1][1] / sumfo[n - 1][1]) * 100.0;
if (print) {
logger.info(sb.toString());
}
}
use of ffx.numerics.ComplexNumber in project ffx by mjschnie.
the class CrystalReciprocalSpaceTest method test1NSFPermanent.
@Test
public void test1NSFPermanent() {
String filename = "ffx/xray/structures/1NSF.pdb";
int index = filename.lastIndexOf(".");
String name = filename.substring(0, index);
// load the structure
ClassLoader cl = this.getClass().getClassLoader();
File structure = new File(cl.getResource(filename).getPath());
// load any properties associated with it
CompositeConfiguration properties = Keyword.loadProperties(structure);
Crystal crystal = new Crystal(115.996, 115.996, 44.13, 90.0, 90.0, 120.0, "P6");
Resolution resolution = new Resolution(1.89631);
ReflectionList reflectionList = new ReflectionList(crystal, resolution);
DiffractionRefinementData refinementData = new DiffractionRefinementData(properties, reflectionList);
ForceFieldFilter forceFieldFilter = new ForceFieldFilter(properties);
ForceField forceField = forceFieldFilter.parse();
// associate molecular assembly with the structure, set up forcefield
MolecularAssembly molecularAssembly = new MolecularAssembly(name);
molecularAssembly.setFile(structure);
molecularAssembly.setForceField(forceField);
PDBFilter pdbFile = new PDBFilter(structure, molecularAssembly, forceField, properties);
pdbFile.readFile();
pdbFile.applyAtomProperties();
molecularAssembly.finalize(true, forceField);
ForceFieldEnergy energy = ForceFieldEnergy.energyFactory(molecularAssembly, pdbFile.getCoordRestraints());
List<Atom> atomList = molecularAssembly.getAtomList();
Atom[] atomArray = atomList.toArray(new Atom[atomList.size()]);
// set up FFT and run it
ParallelTeam parallelTeam = new ParallelTeam();
CrystalReciprocalSpace crs = new CrystalReciprocalSpace(reflectionList, atomArray, parallelTeam, parallelTeam);
crs.computeAtomicDensity(refinementData.fc);
// tests
ComplexNumber b = new ComplexNumber(-496.999, 431.817);
HKL hkl = reflectionList.getHKL(1, 9, 4);
ComplexNumber a = refinementData.getFc(hkl.index());
System.out.println("1 9 4: " + a.toString() + " | " + b.toString() + " | " + a.divides(b).toString());
assertEquals("1 9 4 reflection should be correct", -493.7799429881329, a.re(), 0.0001);
assertEquals("1 9 4 reflection should be correct", 460.7022632345927, a.im(), 0.0001);
b.re(-129.767);
b.im(-76.9812);
hkl = reflectionList.getHKL(5, 26, 8);
a = refinementData.getFc(hkl.index());
System.out.println("5 26 8: " + a.toString() + " | " + b.toString() + " | " + a.divides(b).toString());
assertEquals("5 26 8 reflection should be correct", -123.05535567943377, a.re(), 0.0001);
assertEquals("5 26 8 reflection should be correct", -74.59007322382718, a.im(), 0.0001);
}
Aggregations