use of ffx.potential.nonbonded.ReciprocalSpace in project ffx by mjschnie.
the class ForceFieldEnergyOpenMM method addAmoebaMultipoleForce.
private void addAmoebaMultipoleForce() {
ParticleMeshEwald pme = super.getPmeNode();
if (pme == null) {
return;
}
int[][] axisAtom = pme.getAxisAtoms();
double dipoleConversion = OpenMM_NmPerAngstrom;
double quadrupoleConversion = OpenMM_NmPerAngstrom * OpenMM_NmPerAngstrom;
double polarityConversion = OpenMM_NmPerAngstrom * OpenMM_NmPerAngstrom * OpenMM_NmPerAngstrom;
double dampingFactorConversion = sqrt(OpenMM_NmPerAngstrom);
amoebaMultipoleForce = OpenMM_AmoebaMultipoleForce_create();
double polarScale = 1.0;
if (pme.getPolarizationType() != Polarization.MUTUAL) {
OpenMM_AmoebaMultipoleForce_setPolarizationType(amoebaMultipoleForce, OpenMM_AmoebaMultipoleForce_Direct);
if (pme.getPolarizationType() == Polarization.NONE) {
polarScale = 0.0;
}
} else {
ForceField forceField = molecularAssembly.getForceField();
String algorithm = forceField.getString(ForceField.ForceFieldString.SCF_ALGORITHM, "CG");
ParticleMeshEwald.SCFAlgorithm scfAlgorithm;
try {
algorithm = algorithm.replaceAll("-", "_").toUpperCase();
scfAlgorithm = ParticleMeshEwald.SCFAlgorithm.valueOf(algorithm);
} catch (Exception e) {
scfAlgorithm = ParticleMeshEwald.SCFAlgorithm.CG;
}
switch(scfAlgorithm) {
case EPT:
logger.info(" Using extrapolated perturbation theory approximation instead of full SCF calculations. Not supported in FFX reference implementation.");
OpenMM_AmoebaMultipoleForce_setPolarizationType(amoebaMultipoleForce, OpenMM_AmoebaMultipoleForce_Extrapolated);
PointerByReference exptCoefficients = OpenMM_DoubleArray_create(4);
OpenMM_DoubleArray_set(exptCoefficients, 0, -0.154);
OpenMM_DoubleArray_set(exptCoefficients, 1, 0.017);
OpenMM_DoubleArray_set(exptCoefficients, 2, 0.657);
OpenMM_DoubleArray_set(exptCoefficients, 3, 0.475);
OpenMM_AmoebaMultipoleForce_setExtrapolationCoefficients(amoebaMultipoleForce, exptCoefficients);
OpenMM_DoubleArray_destroy(exptCoefficients);
break;
case CG:
case SOR:
default:
OpenMM_AmoebaMultipoleForce_setPolarizationType(amoebaMultipoleForce, OpenMM_AmoebaMultipoleForce_Mutual);
break;
}
}
PointerByReference dipoles = OpenMM_DoubleArray_create(3);
PointerByReference quadrupoles = OpenMM_DoubleArray_create(9);
Atom[] atoms = molecularAssembly.getAtomArray();
int nAtoms = atoms.length;
for (int i = 0; i < nAtoms; i++) {
Atom atom = atoms[i];
MultipoleType multipoleType = atom.getMultipoleType();
PolarizeType polarType = atom.getPolarizeType();
/**
* Define the frame definition.
*/
int axisType = OpenMM_AmoebaMultipoleForce_NoAxisType;
switch(multipoleType.frameDefinition) {
case ZONLY:
axisType = OpenMM_AmoebaMultipoleForce_ZOnly;
break;
case ZTHENX:
axisType = OpenMM_AmoebaMultipoleForce_ZThenX;
break;
case BISECTOR:
axisType = OpenMM_AmoebaMultipoleForce_Bisector;
break;
case ZTHENBISECTOR:
axisType = OpenMM_AmoebaMultipoleForce_ZBisect;
break;
case TRISECTOR:
axisType = OpenMM_AmoebaMultipoleForce_ThreeFold;
break;
default:
break;
}
double useFactor = 1.0;
if (!atoms[i].getUse() || !atoms[i].getElectrostatics()) {
// if (!atoms[i].getUse()) {
useFactor = 0.0;
}
// Should be 1.0 at this point.
double lambdaScale = lambda;
if (!atom.applyLambda()) {
lambdaScale = 1.0;
}
useFactor *= lambdaScale;
/**
* Load local multipole coefficients.
*/
for (int j = 0; j < 3; j++) {
OpenMM_DoubleArray_set(dipoles, j, multipoleType.dipole[j] * dipoleConversion * useFactor);
}
int l = 0;
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) {
OpenMM_DoubleArray_set(quadrupoles, l++, multipoleType.quadrupole[j][k] * quadrupoleConversion * useFactor / 3.0);
}
}
// int zaxis = 0;
int zaxis = 1;
// int xaxis = 0;
int xaxis = 1;
// int yaxis = 0;
int yaxis = 1;
int[] refAtoms = axisAtom[i];
if (refAtoms != null) {
zaxis = refAtoms[0];
if (refAtoms.length > 1) {
xaxis = refAtoms[1];
if (refAtoms.length > 2) {
yaxis = refAtoms[2];
}
}
} else {
axisType = OpenMM_AmoebaMultipoleForce_NoAxisType;
logger.info(String.format(" Atom type %s", atom.getAtomType().toString()));
}
double charge = multipoleType.charge * useFactor;
/**
* Add the multipole.
*/
OpenMM_AmoebaMultipoleForce_addMultipole(amoebaMultipoleForce, charge, dipoles, quadrupoles, axisType, zaxis, xaxis, yaxis, polarType.thole, polarType.pdamp * dampingFactorConversion, polarType.polarizability * polarityConversion * polarScale);
}
OpenMM_DoubleArray_destroy(dipoles);
OpenMM_DoubleArray_destroy(quadrupoles);
Crystal crystal = super.getCrystal();
if (!crystal.aperiodic()) {
OpenMM_AmoebaMultipoleForce_setNonbondedMethod(amoebaMultipoleForce, OpenMM_AmoebaMultipoleForce_PME);
OpenMM_AmoebaMultipoleForce_setCutoffDistance(amoebaMultipoleForce, pme.getEwaldCutoff() * OpenMM_NmPerAngstrom);
OpenMM_AmoebaMultipoleForce_setAEwald(amoebaMultipoleForce, pme.getEwaldCoefficient() / OpenMM_NmPerAngstrom);
double ewaldTolerance = 1.0e-04;
OpenMM_AmoebaMultipoleForce_setEwaldErrorTolerance(amoebaMultipoleForce, ewaldTolerance);
PointerByReference gridDimensions = OpenMM_IntArray_create(3);
ReciprocalSpace recip = pme.getReciprocalSpace();
OpenMM_IntArray_set(gridDimensions, 0, recip.getXDim());
OpenMM_IntArray_set(gridDimensions, 1, recip.getYDim());
OpenMM_IntArray_set(gridDimensions, 2, recip.getZDim());
OpenMM_AmoebaMultipoleForce_setPmeGridDimensions(amoebaMultipoleForce, gridDimensions);
OpenMM_IntArray_destroy(gridDimensions);
} else {
OpenMM_AmoebaMultipoleForce_setNonbondedMethod(amoebaMultipoleForce, OpenMM_AmoebaMultipoleForce_NoCutoff);
}
OpenMM_AmoebaMultipoleForce_setMutualInducedMaxIterations(amoebaMultipoleForce, 500);
OpenMM_AmoebaMultipoleForce_setMutualInducedTargetEpsilon(amoebaMultipoleForce, pme.getPolarEps());
int[][] ip11 = pme.getPolarization11();
int[][] ip12 = pme.getPolarization12();
int[][] ip13 = pme.getPolarization13();
ArrayList<Integer> list12 = new ArrayList<>();
ArrayList<Integer> list13 = new ArrayList<>();
ArrayList<Integer> list14 = new ArrayList<>();
PointerByReference covalentMap = OpenMM_IntArray_create(0);
for (int i = 0; i < nAtoms; i++) {
Atom ai = atoms[i];
list12.clear();
list13.clear();
list14.clear();
for (Bond bond : ai.getBonds()) {
int index = bond.get1_2(ai).getIndex() - 1;
OpenMM_IntArray_append(covalentMap, index);
list12.add(index);
}
OpenMM_AmoebaMultipoleForce_setCovalentMap(amoebaMultipoleForce, i, OpenMM_AmoebaMultipoleForce_Covalent12, covalentMap);
OpenMM_IntArray_resize(covalentMap, 0);
for (Angle angle : ai.getAngles()) {
Atom ak = angle.get1_3(ai);
if (ak != null) {
int index = ak.getIndex() - 1;
if (!list12.contains(index)) {
list13.add(index);
OpenMM_IntArray_append(covalentMap, index);
}
}
}
OpenMM_AmoebaMultipoleForce_setCovalentMap(amoebaMultipoleForce, i, OpenMM_AmoebaMultipoleForce_Covalent13, covalentMap);
OpenMM_IntArray_resize(covalentMap, 0);
for (Torsion torsion : ai.getTorsions()) {
Atom ak = torsion.get1_4(ai);
if (ak != null) {
int index = ak.getIndex() - 1;
if (!list12.contains(index) && !list13.contains(index)) {
list14.add(index);
OpenMM_IntArray_append(covalentMap, index);
}
}
}
OpenMM_AmoebaMultipoleForce_setCovalentMap(amoebaMultipoleForce, i, OpenMM_AmoebaMultipoleForce_Covalent14, covalentMap);
OpenMM_IntArray_resize(covalentMap, 0);
for (Atom ak : ai.get1_5s()) {
int index = ak.getIndex() - 1;
if (!list12.contains(index) && !list13.contains(index) && !list14.contains(index)) {
OpenMM_IntArray_append(covalentMap, index);
}
}
OpenMM_AmoebaMultipoleForce_setCovalentMap(amoebaMultipoleForce, i, OpenMM_AmoebaMultipoleForce_Covalent15, covalentMap);
OpenMM_IntArray_resize(covalentMap, 0);
for (int j = 0; j < ip11[i].length; j++) {
OpenMM_IntArray_append(covalentMap, ip11[i][j]);
}
OpenMM_AmoebaMultipoleForce_setCovalentMap(amoebaMultipoleForce, i, OpenMM_AmoebaMultipoleForce_PolarizationCovalent11, covalentMap);
OpenMM_IntArray_resize(covalentMap, 0);
// for (int j = 0; j < ip12[i].length; j++) {
// OpenMM_IntArray_append(covalentMap, ip12[i][j]);
// }
// OpenMM_AmoebaMultipoleForce_setCovalentMap(amoebaMultipoleForce, i,
// OpenMM_AmoebaMultipoleForce_PolarizationCovalent12, covalentMap);
// OpenMM_IntArray_resize(covalentMap, 0);
//
// for (int j = 0; j < ip13[i].length; j++) {
// OpenMM_IntArray_append(covalentMap, ip13[i][j]);
// }
// OpenMM_AmoebaMultipoleForce_setCovalentMap(amoebaMultipoleForce, i,
// OpenMM_AmoebaMultipoleForce_PolarizationCovalent13, covalentMap);
// OpenMM_IntArray_resize(covalentMap, 0);
//
// OpenMM_AmoebaMultipoleForce_setCovalentMap(amoebaMultipoleForce, i,
// OpenMM_AmoebaMultipoleForce_PolarizationCovalent14, covalentMap);
}
OpenMM_IntArray_destroy(covalentMap);
OpenMM_System_addForce(system, amoebaMultipoleForce);
OpenMM_Force_setForceGroup(amoebaMultipoleForce, 1);
logger.log(Level.INFO, " Added polarizable multipole force.");
GeneralizedKirkwood gk = super.getGK();
if (gk != null) {
addGKForce();
}
}
Aggregations