Search in sources :

Example 1 with DHistogram

use of hex.gbm.DHistogram in project h2o-2 by h2oai.

the class DRF method buildNextKTrees.

// --------------------------------------------------------------------------
// Build the next random k-trees representing tid-th tree
private DTree[] buildNextKTrees(Frame fr, int mtrys, float sample_rate, Random rand, int tid) {
    // We're going to build K (nclass) trees - each focused on correcting
    // errors for a single class.
    final DTree[] ktrees = new DTree[_nclass];
    // Initial set of histograms.  All trees; one leaf per tree (the root
    // leaf); all columns
    DHistogram[][][] hcs = new DHistogram[_nclass][1][_ncols];
    // Adjust nbins for the top-levels
    int adj_nbins = Math.max((1 << (10 - 0)), nbins);
    // Use for all k-trees the same seed. NOTE: this is only to make a fair
    // view for all k-trees
    long rseed = rand.nextLong();
    // Initially setup as-if an empty-split had just happened
    for (int k = 0; k < _nclass; k++) {
        assert (_distribution != null && classification) || (_distribution == null && !classification);
        if (_distribution == null || _distribution[k] != 0) {
            // Ignore missing classes
            // The Boolean Optimization cannot be applied here for RF !
            // This optimization assumes the 2nd tree of a 2-class system is the
            // inverse of the first.  This is false for DRF (and true for GBM) -
            // DRF picks a random different set of columns for the 2nd tree.
            //if( k==1 && _nclass==2 ) continue;
            ktrees[k] = new DRFTree(fr, _ncols, (char) nbins, (char) _nclass, min_rows, mtrys, rseed);
            boolean isBinom = classification;
            // The "root" node
            new DRFUndecidedNode(ktrees[k], -1, DHistogram.initialHist(fr, _ncols, adj_nbins, hcs[k][0], min_rows, do_grpsplit, isBinom));
        }
    }
    // Sample - mark the lines by putting 'OUT_OF_BAG' into nid(<klass>) vector
    Timer t_1 = new Timer();
    Sample[] ss = new Sample[_nclass];
    for (int k = 0; k < _nclass; k++) if (ktrees[k] != null)
        ss[k] = new Sample((DRFTree) ktrees[k], sample_rate).dfork(0, new Frame(vec_nids(fr, k), vec_resp(fr, k)), build_tree_one_node);
    for (int k = 0; k < _nclass; k++) if (ss[k] != null)
        ss[k].getResult();
    Log.debug(Sys.DRF__, "Sampling took: + " + t_1);
    // Define a "working set" of leaf splits, from leafs[i] to tree._len for each tree i
    int[] leafs = new int[_nclass];
    // ----
    // One Big Loop till the ktrees are of proper depth.
    // Adds a layer to the trees each pass.
    Timer t_2 = new Timer();
    int depth = 0;
    for (; depth < max_depth; depth++) {
        if (!Job.isRunning(self()))
            return null;
        hcs = buildLayer(fr, ktrees, leafs, hcs, true, build_tree_one_node);
        // If we did not make any new splits, then the tree is split-to-death
        if (hcs == null)
            break;
    }
    Log.debug(Sys.DRF__, "Tree build took: " + t_2);
    // Each tree bottomed-out in a DecidedNode; go 1 more level and insert
    // LeafNodes to hold predictions.
    Timer t_3 = new Timer();
    for (int k = 0; k < _nclass; k++) {
        DTree tree = ktrees[k];
        if (tree == null)
            continue;
        int leaf = leafs[k] = tree.len();
        for (int nid = 0; nid < leaf; nid++) {
            if (tree.node(nid) instanceof DecidedNode) {
                DecidedNode dn = tree.decided(nid);
                for (int i = 0; i < dn._nids.length; i++) {
                    int cnid = dn._nids[i];
                    if (// Bottomed out (predictors or responses known constant)
                    cnid == -1 || // Or chopped off for depth
                    tree.node(cnid) instanceof UndecidedNode || (// Or not possible to split
                    tree.node(cnid) instanceof DecidedNode && ((DecidedNode) tree.node(cnid))._split.col() == -1)) {
                        LeafNode ln = new DRFLeafNode(tree, nid);
                        // Set prediction into the leaf
                        ln._pred = dn.pred(i);
                        // Mark a leaf here
                        dn._nids[i] = ln.nid();
                    }
                }
                // Handle the trivial non-splitting tree
                if (nid == 0 && dn._split.col() == -1)
                    new DRFLeafNode(tree, -1, 0);
            }
        }
    }
    // -- k-trees are done
    Log.debug(Sys.DRF__, "Nodes propagation: " + t_3);
    // ----
    // Move rows into the final leaf rows
    Timer t_4 = new Timer();
    CollectPreds cp = new CollectPreds(ktrees, leafs).doAll(fr, build_tree_one_node);
    if (importance) {
        if (// Track right votes over OOB rows for this tree
        classification)
            // Track right votes over OOB rows for this tree
            asVotes(_treeMeasuresOnOOB).append(cp.rightVotes, cp.allRows);
        else
            /* regression */
            asSSE(_treeMeasuresOnOOB).append(cp.sse, cp.allRows);
    }
    Log.debug(Sys.DRF__, "CollectPreds done: " + t_4);
    // Collect leaves stats
    for (int i = 0; i < ktrees.length; i++) if (ktrees[i] != null)
        ktrees[i].leaves = ktrees[i].len() - leafs[i];
    return ktrees;
}
Also used : Frame(water.fvec.Frame) UndecidedNode(hex.gbm.DTree.UndecidedNode) DTree(hex.gbm.DTree) DecidedNode(hex.gbm.DTree.DecidedNode) DHistogram(hex.gbm.DHistogram) LeafNode(hex.gbm.DTree.LeafNode)

Aggregations

DHistogram (hex.gbm.DHistogram)1 DTree (hex.gbm.DTree)1 DecidedNode (hex.gbm.DTree.DecidedNode)1 LeafNode (hex.gbm.DTree.LeafNode)1 UndecidedNode (hex.gbm.DTree.UndecidedNode)1 Frame (water.fvec.Frame)1