use of hex.genmodel.GenModel in project h2o-3 by h2oai.
the class PredictCsv method loadPojo.
private void loadPojo(String className) throws Exception {
GenModel genModel = (GenModel) Class.forName(className).newInstance();
model = new EasyPredictModelWrapper(new EasyPredictModelWrapper.Config().setModel(genModel).setConvertUnknownCategoricalLevelsToNa(true));
}
use of hex.genmodel.GenModel in project h2o-3 by h2oai.
the class Model method testJavaScoring.
public boolean testJavaScoring(Frame data, Frame model_predictions, double rel_epsilon, double abs_epsilon, double fraction) {
ModelBuilder mb = ModelBuilder.make(_parms.algoName().toLowerCase(), null, null);
boolean havePojo = mb.havePojo();
boolean haveMojo = mb.haveMojo();
Random rnd = RandomUtils.getRNG(data.byteSize());
assert data.numRows() == model_predictions.numRows();
Frame fr = new Frame(data);
boolean computeMetrics = data.vec(_output.responseName()) != null && !data.vec(_output.responseName()).isBad();
try {
String[] warns = adaptTestForTrain(fr, true, computeMetrics);
if (warns.length > 0)
System.err.println(Arrays.toString(warns));
// Output is in the model's domain, but needs to be mapped to the scored
// dataset's domain.
int[] omap = null;
if (_output.isClassifier()) {
Vec actual = fr.vec(_output.responseName());
// Scored/test domain; can be null
String[] sdomain = actual == null ? null : actual.domain();
// Domain of predictions (union of test and train)
String[] mdomain = model_predictions.vec(0).domain();
if (sdomain != null && !Arrays.equals(mdomain, sdomain)) {
// Map from model-domain to scoring-domain
omap = CategoricalWrappedVec.computeMap(mdomain, sdomain);
}
}
String modelName = JCodeGen.toJavaId(_key.toString());
boolean preview = false;
GenModel genmodel = null;
Vec[] dvecs = fr.vecs();
Vec[] pvecs = model_predictions.vecs();
double[] features = null;
int num_errors = 0;
int num_total = 0;
// First try internal POJO via fast double[] API
if (havePojo) {
try {
String java_text = toJava(preview, true);
Class clz = JCodeGen.compile(modelName, java_text);
genmodel = (GenModel) clz.newInstance();
} catch (Exception e) {
e.printStackTrace();
throw H2O.fail("Internal POJO compilation failed", e);
}
features = MemoryManager.malloc8d(genmodel._names.length);
double[] predictions = MemoryManager.malloc8d(genmodel.nclasses() + 1);
// Compare predictions, counting mis-predicts
for (int row = 0; row < fr.numRows(); row++) {
// For all rows, single-threaded
if (rnd.nextDouble() >= fraction)
continue;
num_total++;
// Native Java API
for (// Build feature set
int col = 0; // Build feature set
col < features.length; // Build feature set
col++) features[col] = dvecs[col].at(row);
// POJO predictions
genmodel.score0(features, predictions);
for (int col = _output.isClassifier() ? 1 : 0; col < pvecs.length; col++) {
// Compare predictions
// Load internal scoring predictions
double d = pvecs[col].at(row);
// map categorical response to scoring domain
if (col == 0 && omap != null)
d = omap[(int) d];
if (!MathUtils.compare(predictions[col], d, abs_epsilon, rel_epsilon)) {
if (num_errors++ < 10)
System.err.println("Predictions mismatch, row " + row + ", col " + model_predictions._names[col] + ", internal prediction=" + d + ", POJO prediction=" + predictions[col]);
break;
}
}
}
}
// EasyPredict API with POJO and/or MOJO
for (int i = 0; i < 2; ++i) {
if (i == 0 && !havePojo)
continue;
if (i == 1 && !haveMojo)
continue;
if (i == 1) {
// MOJO
final String filename = modelName + ".zip";
StreamingSchema ss = new StreamingSchema(getMojo(), filename);
try {
FileOutputStream os = new FileOutputStream(ss.getFilename());
ss.getStreamWriter().writeTo(os);
os.close();
genmodel = MojoModel.load(filename);
features = MemoryManager.malloc8d(genmodel._names.length);
} catch (IOException e1) {
e1.printStackTrace();
throw H2O.fail("Internal MOJO loading failed", e1);
} finally {
boolean deleted = new File(filename).delete();
if (!deleted)
Log.warn("Failed to delete the file");
}
}
EasyPredictModelWrapper epmw = new EasyPredictModelWrapper(new EasyPredictModelWrapper.Config().setModel(genmodel).setConvertUnknownCategoricalLevelsToNa(true));
RowData rowData = new RowData();
BufferedString bStr = new BufferedString();
for (int row = 0; row < fr.numRows(); row++) {
// For all rows, single-threaded
if (rnd.nextDouble() >= fraction)
continue;
if (genmodel.getModelCategory() == ModelCategory.AutoEncoder)
continue;
// Generate input row
for (int col = 0; col < features.length; col++) {
if (dvecs[col].isString()) {
rowData.put(genmodel._names[col], dvecs[col].atStr(bStr, row).toString());
} else {
double val = dvecs[col].at(row);
rowData.put(genmodel._names[col], genmodel._domains[col] == null ? (Double) val : // missing categorical values are kept as NaN, the score0 logic passes it on to bitSetContains()
Double.isNaN(val) ? // missing categorical values are kept as NaN, the score0 logic passes it on to bitSetContains()
val : //unseen levels are treated as such
(int) val < genmodel._domains[col].length ? genmodel._domains[col][(int) val] : "UnknownLevel");
}
}
// Make a prediction
AbstractPrediction p;
try {
p = epmw.predict(rowData);
} catch (PredictException e) {
num_errors++;
if (num_errors < 20) {
System.err.println("EasyPredict threw an exception when predicting row " + rowData);
e.printStackTrace();
}
continue;
}
// Convert model predictions and "internal" predictions into the same shape
double[] expected_preds = new double[pvecs.length];
double[] actual_preds = new double[pvecs.length];
for (int col = 0; col < pvecs.length; col++) {
// Compare predictions
// Load internal scoring predictions
double d = pvecs[col].at(row);
// map categorical response to scoring domain
if (col == 0 && omap != null)
d = omap[(int) d];
double d2 = Double.NaN;
switch(genmodel.getModelCategory()) {
case Clustering:
d2 = ((ClusteringModelPrediction) p).cluster;
break;
case Regression:
d2 = ((RegressionModelPrediction) p).value;
break;
case Binomial:
BinomialModelPrediction bmp = (BinomialModelPrediction) p;
d2 = (col == 0) ? bmp.labelIndex : bmp.classProbabilities[col - 1];
break;
case Multinomial:
MultinomialModelPrediction mmp = (MultinomialModelPrediction) p;
d2 = (col == 0) ? mmp.labelIndex : mmp.classProbabilities[col - 1];
break;
case DimReduction:
d2 = ((DimReductionModelPrediction) p).dimensions[col];
break;
}
expected_preds[col] = d;
actual_preds[col] = d2;
}
// Verify the correctness of the prediction
num_total++;
for (int col = genmodel.isClassifier() ? 1 : 0; col < pvecs.length; col++) {
if (!MathUtils.compare(actual_preds[col], expected_preds[col], abs_epsilon, rel_epsilon)) {
num_errors++;
if (num_errors < 20) {
System.err.println((i == 0 ? "POJO" : "MOJO") + " EasyPredict Predictions mismatch for row " + rowData);
System.err.println(" Expected predictions: " + Arrays.toString(expected_preds));
System.err.println(" Actual predictions: " + Arrays.toString(actual_preds));
}
break;
}
}
}
}
if (num_errors != 0)
System.err.println("Number of errors: " + num_errors + (num_errors > 20 ? " (only first 20 are shown)" : "") + " out of " + num_total + " rows tested.");
return num_errors == 0;
} finally {
// Remove temp keys.
cleanup_adapt(fr, data);
}
}
use of hex.genmodel.GenModel in project h2o-3 by h2oai.
the class PredictCsv method loadMojo.
private void loadMojo(String modelName) throws IOException {
GenModel genModel = MojoModel.load(modelName);
model = new EasyPredictModelWrapper(new EasyPredictModelWrapper.Config().setModel(genModel).setConvertUnknownCategoricalLevelsToNa(true));
}
Aggregations