Search in sources :

Example 1 with RelOptPlanner

use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project hive by apache.

the class HiveMaterializedViewFilterScanRule method apply.

protected void apply(RelOptRuleCall call, Project project, Filter filter, TableScan scan) {
    RelOptPlanner planner = call.getPlanner();
    List<RelOptMaterialization> materializations = (planner instanceof VolcanoPlanner) ? ((VolcanoPlanner) planner).getMaterializations() : ImmutableList.<RelOptMaterialization>of();
    if (!materializations.isEmpty()) {
        RelNode root = project.copy(project.getTraitSet(), Collections.singletonList(filter.copy(filter.getTraitSet(), Collections.singletonList((RelNode) scan))));
        // Costing is done in transformTo(), so we call it repeatedly with all applicable
        // materialized views and cheapest one will be picked
        List<RelOptMaterialization> applicableMaterializations = VolcanoPlanner.getApplicableMaterializations(root, materializations);
        for (RelOptMaterialization materialization : applicableMaterializations) {
            List<RelNode> subs = new MaterializedViewSubstitutionVisitor(materialization.queryRel, root, relBuilderFactory).go(materialization.tableRel);
            for (RelNode s : subs) {
                call.transformTo(s);
            }
        }
    }
}
Also used : RelNode(org.apache.calcite.rel.RelNode) RelOptMaterialization(org.apache.calcite.plan.RelOptMaterialization) VolcanoPlanner(org.apache.calcite.plan.volcano.VolcanoPlanner) RelOptPlanner(org.apache.calcite.plan.RelOptPlanner)

Example 2 with RelOptPlanner

use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project calcite by apache.

the class JdbcTest method testIntersect.

@Test
public void testIntersect() {
    final String sql = "" + "select \"empid\", \"name\" from \"hr\".\"emps\" where \"deptno\"=10\n" + "intersect\n" + "select \"empid\", \"name\" from \"hr\".\"emps\" where \"empid\">=150";
    CalciteAssert.hr().query(sql).withHook(Hook.PLANNER, new Function<RelOptPlanner, Void>() {

        @Override
        public Void apply(RelOptPlanner planner) {
            planner.removeRule(IntersectToDistinctRule.INSTANCE);
            return null;
        }
    }).explainContains("" + "PLAN=EnumerableIntersect(all=[false])").returnsUnordered("empid=150; name=Sebastian");
}
Also used : CoreMatchers.containsString(org.hamcrest.CoreMatchers.containsString) RelOptPlanner(org.apache.calcite.plan.RelOptPlanner) Test(org.junit.Test)

Example 3 with RelOptPlanner

use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project calcite by apache.

the class AbstractMaterializedViewRule method perform.

/**
 * Rewriting logic is based on "Optimizing Queries Using Materialized Views:
 * A Practical, Scalable Solution" by Goldstein and Larson.
 *
 * <p>On the query side, rules matches a Project-node chain or node, where node
 * is either an Aggregate or a Join. Subplan rooted at the node operator must
 * be composed of one or more of the following operators: TableScan, Project,
 * Filter, and Join.
 *
 * <p>For each join MV, we need to check the following:
 * <ol>
 * <li> The plan rooted at the Join operator in the view produces all rows
 * needed by the plan rooted at the Join operator in the query.</li>
 * <li> All columns required by compensating predicates, i.e., predicates that
 * need to be enforced over the view, are available at the view output.</li>
 * <li> All output expressions can be computed from the output of the view.</li>
 * <li> All output rows occur with the correct duplication factor. We might
 * rely on existing Unique-Key - Foreign-Key relationships to extract that
 * information.</li>
 * </ol>
 *
 * <p>In turn, for each aggregate MV, we need to check the following:
 * <ol>
 * <li> The plan rooted at the Aggregate operator in the view produces all rows
 * needed by the plan rooted at the Aggregate operator in the query.</li>
 * <li> All columns required by compensating predicates, i.e., predicates that
 * need to be enforced over the view, are available at the view output.</li>
 * <li> The grouping columns in the query are a subset of the grouping columns
 * in the view.</li>
 * <li> All columns required to perform further grouping are available in the
 * view output.</li>
 * <li> All columns required to compute output expressions are available in the
 * view output.</li>
 * </ol>
 *
 * <p>The rule contains multiple extensions compared to the original paper. One of
 * them is the possibility of creating rewritings using Union operators, e.g., if
 * the result of a query is partially contained in the materialized view.
 */
protected void perform(RelOptRuleCall call, Project topProject, RelNode node) {
    final RexBuilder rexBuilder = node.getCluster().getRexBuilder();
    final RelMetadataQuery mq = RelMetadataQuery.instance();
    final RelOptPlanner planner = call.getPlanner();
    final RexExecutor executor = Util.first(planner.getExecutor(), RexUtil.EXECUTOR);
    final RelOptPredicateList predicates = RelOptPredicateList.EMPTY;
    final RexSimplify simplify = new RexSimplify(rexBuilder, predicates, true, executor);
    final List<RelOptMaterialization> materializations = (planner instanceof VolcanoPlanner) ? ((VolcanoPlanner) planner).getMaterializations() : ImmutableList.<RelOptMaterialization>of();
    if (!materializations.isEmpty()) {
        // try to generate a rewriting are met
        if (!isValidPlan(topProject, node, mq)) {
            return;
        }
        // Obtain applicable (filtered) materializations
        // TODO: Filtering of relevant materializations needs to be
        // improved so we gather only materializations that might
        // actually generate a valid rewriting.
        final List<RelOptMaterialization> applicableMaterializations = RelOptMaterializations.getApplicableMaterializations(node, materializations);
        if (!applicableMaterializations.isEmpty()) {
            // 2. Initialize all query related auxiliary data structures
            // that will be used throughout query rewriting process
            // Generate query table references
            final Set<RelTableRef> queryTableRefs = mq.getTableReferences(node);
            if (queryTableRefs == null) {
                // Bail out
                return;
            }
            // Extract query predicates
            final RelOptPredicateList queryPredicateList = mq.getAllPredicates(node);
            if (queryPredicateList == null) {
                // Bail out
                return;
            }
            final RexNode pred = simplify.simplify(RexUtil.composeConjunction(rexBuilder, queryPredicateList.pulledUpPredicates, false));
            final Triple<RexNode, RexNode, RexNode> queryPreds = splitPredicates(rexBuilder, pred);
            // Extract query equivalence classes. An equivalence class is a set
            // of columns in the query output that are known to be equal.
            final EquivalenceClasses qEC = new EquivalenceClasses();
            for (RexNode conj : RelOptUtil.conjunctions(queryPreds.getLeft())) {
                assert conj.isA(SqlKind.EQUALS);
                RexCall equiCond = (RexCall) conj;
                qEC.addEquivalenceClass((RexTableInputRef) equiCond.getOperands().get(0), (RexTableInputRef) equiCond.getOperands().get(1));
            }
            // rewrite the given query
            for (RelOptMaterialization materialization : applicableMaterializations) {
                RelNode view = materialization.tableRel;
                Project topViewProject;
                RelNode viewNode;
                if (materialization.queryRel instanceof Project) {
                    topViewProject = (Project) materialization.queryRel;
                    viewNode = topViewProject.getInput();
                } else {
                    topViewProject = null;
                    viewNode = materialization.queryRel;
                }
                // 3.1. View checks before proceeding
                if (!isValidPlan(topViewProject, viewNode, mq)) {
                    // Skip it
                    continue;
                }
                // 3.2. Initialize all query related auxiliary data structures
                // that will be used throughout query rewriting process
                // Extract view predicates
                final RelOptPredicateList viewPredicateList = mq.getAllPredicates(viewNode);
                if (viewPredicateList == null) {
                    // Skip it
                    continue;
                }
                final RexNode viewPred = simplify.simplify(RexUtil.composeConjunction(rexBuilder, viewPredicateList.pulledUpPredicates, false));
                final Triple<RexNode, RexNode, RexNode> viewPreds = splitPredicates(rexBuilder, viewPred);
                // Extract view table references
                final Set<RelTableRef> viewTableRefs = mq.getTableReferences(viewNode);
                if (viewTableRefs == null) {
                    // Bail out
                    return;
                }
                // Extract view tables
                MatchModality matchModality;
                Multimap<RexTableInputRef, RexTableInputRef> compensationEquiColumns = ArrayListMultimap.create();
                if (!queryTableRefs.equals(viewTableRefs)) {
                    // subset of query tables (add additional tables through joins if possible)
                    if (viewTableRefs.containsAll(queryTableRefs)) {
                        matchModality = MatchModality.QUERY_PARTIAL;
                        final EquivalenceClasses vEC = new EquivalenceClasses();
                        for (RexNode conj : RelOptUtil.conjunctions(viewPreds.getLeft())) {
                            assert conj.isA(SqlKind.EQUALS);
                            RexCall equiCond = (RexCall) conj;
                            vEC.addEquivalenceClass((RexTableInputRef) equiCond.getOperands().get(0), (RexTableInputRef) equiCond.getOperands().get(1));
                        }
                        if (!compensatePartial(viewTableRefs, vEC, queryTableRefs, compensationEquiColumns)) {
                            // Cannot rewrite, skip it
                            continue;
                        }
                    } else if (queryTableRefs.containsAll(viewTableRefs)) {
                        matchModality = MatchModality.VIEW_PARTIAL;
                        ViewPartialRewriting partialRewritingResult = compensateViewPartial(call.builder(), rexBuilder, mq, view, topProject, node, queryTableRefs, qEC, topViewProject, viewNode, viewTableRefs);
                        if (partialRewritingResult == null) {
                            // Cannot rewrite, skip it
                            continue;
                        }
                        // Rewrite succeeded
                        view = partialRewritingResult.newView;
                        topViewProject = partialRewritingResult.newTopViewProject;
                        viewNode = partialRewritingResult.newViewNode;
                    } else {
                        // Skip it
                        continue;
                    }
                } else {
                    matchModality = MatchModality.COMPLETE;
                }
                // 4. We map every table in the query to a table with the same qualified
                // name (all query tables are contained in the view, thus this is equivalent
                // to mapping every table in the query to a view table).
                final Multimap<RelTableRef, RelTableRef> multiMapTables = ArrayListMultimap.create();
                for (RelTableRef queryTableRef1 : queryTableRefs) {
                    for (RelTableRef queryTableRef2 : queryTableRefs) {
                        if (queryTableRef1.getQualifiedName().equals(queryTableRef2.getQualifiedName())) {
                            multiMapTables.put(queryTableRef1, queryTableRef2);
                        }
                    }
                }
                // If a table is used multiple times, we will create multiple mappings,
                // and we will try to rewrite the query using each of the mappings.
                // Then, we will try to map every source table (query) to a target
                // table (view), and if we are successful, we will try to create
                // compensation predicates to filter the view results further
                // (if needed).
                final List<BiMap<RelTableRef, RelTableRef>> flatListMappings = generateTableMappings(multiMapTables);
                for (BiMap<RelTableRef, RelTableRef> queryToViewTableMapping : flatListMappings) {
                    // TableMapping : mapping query tables -> view tables
                    // 4.0. If compensation equivalence classes exist, we need to add
                    // the mapping to the query mapping
                    final EquivalenceClasses currQEC = EquivalenceClasses.copy(qEC);
                    if (matchModality == MatchModality.QUERY_PARTIAL) {
                        for (Entry<RexTableInputRef, RexTableInputRef> e : compensationEquiColumns.entries()) {
                            // Copy origin
                            RelTableRef queryTableRef = queryToViewTableMapping.inverse().get(e.getKey().getTableRef());
                            RexTableInputRef queryColumnRef = RexTableInputRef.of(queryTableRef, e.getKey().getIndex(), e.getKey().getType());
                            // Add to query equivalence classes and table mapping
                            currQEC.addEquivalenceClass(queryColumnRef, e.getValue());
                            queryToViewTableMapping.put(e.getValue().getTableRef(), // identity
                            e.getValue().getTableRef());
                        }
                    }
                    // 4.1. Compute compensation predicates, i.e., predicates that need to be
                    // enforced over the view to retain query semantics. The resulting predicates
                    // are expressed using {@link RexTableInputRef} over the query.
                    // First, to establish relationship, we swap column references of the view
                    // predicates to point to query tables and compute equivalence classes.
                    final RexNode viewColumnsEquiPred = RexUtil.swapTableReferences(rexBuilder, viewPreds.getLeft(), queryToViewTableMapping.inverse());
                    final EquivalenceClasses queryBasedVEC = new EquivalenceClasses();
                    for (RexNode conj : RelOptUtil.conjunctions(viewColumnsEquiPred)) {
                        assert conj.isA(SqlKind.EQUALS);
                        RexCall equiCond = (RexCall) conj;
                        queryBasedVEC.addEquivalenceClass((RexTableInputRef) equiCond.getOperands().get(0), (RexTableInputRef) equiCond.getOperands().get(1));
                    }
                    Triple<RexNode, RexNode, RexNode> compensationPreds = computeCompensationPredicates(rexBuilder, simplify, currQEC, queryPreds, queryBasedVEC, viewPreds, queryToViewTableMapping);
                    if (compensationPreds == null && generateUnionRewriting) {
                        // Attempt partial rewriting using union operator. This rewriting
                        // will read some data from the view and the rest of the data from
                        // the query computation. The resulting predicates are expressed
                        // using {@link RexTableInputRef} over the view.
                        compensationPreds = computeCompensationPredicates(rexBuilder, simplify, queryBasedVEC, viewPreds, currQEC, queryPreds, queryToViewTableMapping.inverse());
                        if (compensationPreds == null) {
                            // This was our last chance to use the view, skip it
                            continue;
                        }
                        RexNode compensationColumnsEquiPred = compensationPreds.getLeft();
                        RexNode otherCompensationPred = RexUtil.composeConjunction(rexBuilder, ImmutableList.of(compensationPreds.getMiddle(), compensationPreds.getRight()), false);
                        assert !compensationColumnsEquiPred.isAlwaysTrue() || !otherCompensationPred.isAlwaysTrue();
                        // b. Generate union branch (query).
                        final RelNode unionInputQuery = rewriteQuery(call.builder(), rexBuilder, simplify, mq, compensationColumnsEquiPred, otherCompensationPred, topProject, node, queryToViewTableMapping, queryBasedVEC, currQEC);
                        if (unionInputQuery == null) {
                            // Skip it
                            continue;
                        }
                        // c. Generate union branch (view).
                        // We trigger the unifying method. This method will either create a Project
                        // or an Aggregate operator on top of the view. It will also compute the
                        // output expressions for the query.
                        final RelNode unionInputView = rewriteView(call.builder(), rexBuilder, simplify, mq, matchModality, true, view, topProject, node, topViewProject, viewNode, queryToViewTableMapping, currQEC);
                        if (unionInputView == null) {
                            // Skip it
                            continue;
                        }
                        // d. Generate final rewriting (union).
                        final RelNode result = createUnion(call.builder(), rexBuilder, topProject, unionInputQuery, unionInputView);
                        if (result == null) {
                            // Skip it
                            continue;
                        }
                        call.transformTo(result);
                    } else if (compensationPreds != null) {
                        RexNode compensationColumnsEquiPred = compensationPreds.getLeft();
                        RexNode otherCompensationPred = RexUtil.composeConjunction(rexBuilder, ImmutableList.of(compensationPreds.getMiddle(), compensationPreds.getRight()), false);
                        // a. Compute final compensation predicate.
                        if (!compensationColumnsEquiPred.isAlwaysTrue() || !otherCompensationPred.isAlwaysTrue()) {
                            // All columns required by compensating predicates must be contained
                            // in the view output (condition 2).
                            List<RexNode> viewExprs = topViewProject == null ? extractReferences(rexBuilder, view) : topViewProject.getChildExps();
                            // since we want to enforce the rest
                            if (!compensationColumnsEquiPred.isAlwaysTrue()) {
                                compensationColumnsEquiPred = rewriteExpression(rexBuilder, mq, view, viewNode, viewExprs, queryToViewTableMapping.inverse(), queryBasedVEC, false, compensationColumnsEquiPred);
                                if (compensationColumnsEquiPred == null) {
                                    // Skip it
                                    continue;
                                }
                            }
                            // For the rest, we use the query equivalence classes
                            if (!otherCompensationPred.isAlwaysTrue()) {
                                otherCompensationPred = rewriteExpression(rexBuilder, mq, view, viewNode, viewExprs, queryToViewTableMapping.inverse(), currQEC, true, otherCompensationPred);
                                if (otherCompensationPred == null) {
                                    // Skip it
                                    continue;
                                }
                            }
                        }
                        final RexNode viewCompensationPred = RexUtil.composeConjunction(rexBuilder, ImmutableList.of(compensationColumnsEquiPred, otherCompensationPred), false);
                        // b. Generate final rewriting if possible.
                        // First, we add the compensation predicate (if any) on top of the view.
                        // Then, we trigger the unifying method. This method will either create a
                        // Project or an Aggregate operator on top of the view. It will also compute
                        // the output expressions for the query.
                        RelBuilder builder = call.builder();
                        RelNode viewWithFilter;
                        if (!viewCompensationPred.isAlwaysTrue()) {
                            RexNode newPred = simplify.simplify(viewCompensationPred);
                            viewWithFilter = builder.push(view).filter(newPred).build();
                            // We add (and push) the filter to the view plan before triggering the rewriting.
                            // This is useful in case some of the columns can be folded to same value after
                            // filter is added.
                            Pair<RelNode, RelNode> pushedNodes = pushFilterToOriginalViewPlan(builder, topViewProject, viewNode, newPred);
                            topViewProject = (Project) pushedNodes.left;
                            viewNode = pushedNodes.right;
                        } else {
                            viewWithFilter = builder.push(view).build();
                        }
                        final RelNode result = rewriteView(builder, rexBuilder, simplify, mq, matchModality, false, viewWithFilter, topProject, node, topViewProject, viewNode, queryToViewTableMapping, currQEC);
                        if (result == null) {
                            // Skip it
                            continue;
                        }
                        call.transformTo(result);
                    }
                // end else
                }
            }
        }
    }
}
Also used : RelMetadataQuery(org.apache.calcite.rel.metadata.RelMetadataQuery) RelOptPlanner(org.apache.calcite.plan.RelOptPlanner) RexCall(org.apache.calcite.rex.RexCall) RexExecutor(org.apache.calcite.rex.RexExecutor) RelOptPredicateList(org.apache.calcite.plan.RelOptPredicateList) RexBuilder(org.apache.calcite.rex.RexBuilder) RelOptPredicateList(org.apache.calcite.plan.RelOptPredicateList) List(java.util.List) ArrayList(java.util.ArrayList) ImmutableList(com.google.common.collect.ImmutableList) Pair(org.apache.calcite.util.Pair) RelBuilder(org.apache.calcite.tools.RelBuilder) BiMap(com.google.common.collect.BiMap) HashBiMap(com.google.common.collect.HashBiMap) RelTableRef(org.apache.calcite.rex.RexTableInputRef.RelTableRef) RexTableInputRef(org.apache.calcite.rex.RexTableInputRef) Project(org.apache.calcite.rel.core.Project) RelNode(org.apache.calcite.rel.RelNode) RexSimplify(org.apache.calcite.rex.RexSimplify) RelOptMaterialization(org.apache.calcite.plan.RelOptMaterialization) VolcanoPlanner(org.apache.calcite.plan.volcano.VolcanoPlanner) RexNode(org.apache.calcite.rex.RexNode)

Example 4 with RelOptPlanner

use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project calcite by apache.

the class Programs method heuristicJoinOrder.

/**
 * Creates a program that invokes heuristic join-order optimization
 * (via {@link org.apache.calcite.rel.rules.JoinToMultiJoinRule},
 * {@link org.apache.calcite.rel.rules.MultiJoin} and
 * {@link org.apache.calcite.rel.rules.LoptOptimizeJoinRule})
 * if there are 6 or more joins (7 or more relations).
 */
public static Program heuristicJoinOrder(final Iterable<? extends RelOptRule> rules, final boolean bushy, final int minJoinCount) {
    return new Program() {

        public RelNode run(RelOptPlanner planner, RelNode rel, RelTraitSet requiredOutputTraits, List<RelOptMaterialization> materializations, List<RelOptLattice> lattices) {
            final int joinCount = RelOptUtil.countJoins(rel);
            final Program program;
            if (joinCount < minJoinCount) {
                program = ofRules(rules);
            } else {
                // Create a program that gathers together joins as a MultiJoin.
                final HepProgram hep = new HepProgramBuilder().addRuleInstance(FilterJoinRule.FILTER_ON_JOIN).addMatchOrder(HepMatchOrder.BOTTOM_UP).addRuleInstance(JoinToMultiJoinRule.INSTANCE).build();
                final Program program1 = of(hep, false, DefaultRelMetadataProvider.INSTANCE);
                // Create a program that contains a rule to expand a MultiJoin
                // into heuristically ordered joins.
                // We use the rule set passed in, but remove JoinCommuteRule and
                // JoinPushThroughJoinRule, because they cause exhaustive search.
                final List<RelOptRule> list = Lists.newArrayList(rules);
                list.removeAll(ImmutableList.of(JoinCommuteRule.INSTANCE, JoinAssociateRule.INSTANCE, JoinPushThroughJoinRule.LEFT, JoinPushThroughJoinRule.RIGHT));
                list.add(bushy ? MultiJoinOptimizeBushyRule.INSTANCE : LoptOptimizeJoinRule.INSTANCE);
                final Program program2 = ofRules(list);
                program = sequence(program1, program2);
            }
            return program.run(planner, rel, requiredOutputTraits, materializations, lattices);
        }
    };
}
Also used : HepProgram(org.apache.calcite.plan.hep.HepProgram) HepProgram(org.apache.calcite.plan.hep.HepProgram) RelNode(org.apache.calcite.rel.RelNode) HepProgramBuilder(org.apache.calcite.plan.hep.HepProgramBuilder) List(java.util.List) ImmutableList(com.google.common.collect.ImmutableList) RelTraitSet(org.apache.calcite.plan.RelTraitSet) RelOptPlanner(org.apache.calcite.plan.RelOptPlanner) RelOptRule(org.apache.calcite.plan.RelOptRule)

Example 5 with RelOptPlanner

use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project calcite by apache.

the class CalcitePrepareImpl method prepare_.

<T> CalciteSignature<T> prepare_(Context context, Query<T> query, Type elementType, long maxRowCount) {
    if (SIMPLE_SQLS.contains(query.sql)) {
        return simplePrepare(context, query.sql);
    }
    final JavaTypeFactory typeFactory = context.getTypeFactory();
    CalciteCatalogReader catalogReader = new CalciteCatalogReader(context.getRootSchema(), context.getDefaultSchemaPath(), typeFactory, context.config());
    final List<Function1<Context, RelOptPlanner>> plannerFactories = createPlannerFactories();
    if (plannerFactories.isEmpty()) {
        throw new AssertionError("no planner factories");
    }
    RuntimeException exception = Util.FoundOne.NULL;
    for (Function1<Context, RelOptPlanner> plannerFactory : plannerFactories) {
        final RelOptPlanner planner = plannerFactory.apply(context);
        if (planner == null) {
            throw new AssertionError("factory returned null planner");
        }
        try {
            return prepare2_(context, query, elementType, maxRowCount, catalogReader, planner);
        } catch (RelOptPlanner.CannotPlanException e) {
            exception = e;
        }
    }
    throw exception;
}
Also used : DataContext(org.apache.calcite.DataContext) JavaTypeFactory(org.apache.calcite.adapter.java.JavaTypeFactory) Function1(org.apache.calcite.linq4j.function.Function1) RelOptPlanner(org.apache.calcite.plan.RelOptPlanner)

Aggregations

RelOptPlanner (org.apache.calcite.plan.RelOptPlanner)26 RelNode (org.apache.calcite.rel.RelNode)16 RelOptCluster (org.apache.calcite.plan.RelOptCluster)9 RelTraitSet (org.apache.calcite.plan.RelTraitSet)9 RexBuilder (org.apache.calcite.rex.RexBuilder)7 RelOptMaterialization (org.apache.calcite.plan.RelOptMaterialization)5 RelDataType (org.apache.calcite.rel.type.RelDataType)5 ImmutableList (com.google.common.collect.ImmutableList)4 ArrayList (java.util.ArrayList)4 List (java.util.List)4 RelOptRule (org.apache.calcite.plan.RelOptRule)4 HepPlanner (org.apache.calcite.plan.hep.HepPlanner)4 VolcanoPlanner (org.apache.calcite.plan.volcano.VolcanoPlanner)4 JaninoRelMetadataProvider (org.apache.calcite.rel.metadata.JaninoRelMetadataProvider)4 Test (org.junit.Test)4 JavaTypeFactory (org.apache.calcite.adapter.java.JavaTypeFactory)3 JavaTypeFactoryImpl (org.apache.calcite.jdbc.JavaTypeFactoryImpl)3 HepProgram (org.apache.calcite.plan.hep.HepProgram)3 HepProgramBuilder (org.apache.calcite.plan.hep.HepProgramBuilder)3 TableScan (org.apache.calcite.rel.core.TableScan)3