use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project hive by apache.
the class HiveMaterializedViewFilterScanRule method apply.
protected void apply(RelOptRuleCall call, Project project, Filter filter, TableScan scan) {
RelOptPlanner planner = call.getPlanner();
List<RelOptMaterialization> materializations = (planner instanceof VolcanoPlanner) ? ((VolcanoPlanner) planner).getMaterializations() : ImmutableList.<RelOptMaterialization>of();
if (!materializations.isEmpty()) {
RelNode root = project.copy(project.getTraitSet(), Collections.singletonList(filter.copy(filter.getTraitSet(), Collections.singletonList((RelNode) scan))));
// Costing is done in transformTo(), so we call it repeatedly with all applicable
// materialized views and cheapest one will be picked
List<RelOptMaterialization> applicableMaterializations = VolcanoPlanner.getApplicableMaterializations(root, materializations);
for (RelOptMaterialization materialization : applicableMaterializations) {
List<RelNode> subs = new MaterializedViewSubstitutionVisitor(materialization.queryRel, root, relBuilderFactory).go(materialization.tableRel);
for (RelNode s : subs) {
call.transformTo(s);
}
}
}
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project calcite by apache.
the class JdbcTest method testIntersect.
@Test
public void testIntersect() {
final String sql = "" + "select \"empid\", \"name\" from \"hr\".\"emps\" where \"deptno\"=10\n" + "intersect\n" + "select \"empid\", \"name\" from \"hr\".\"emps\" where \"empid\">=150";
CalciteAssert.hr().query(sql).withHook(Hook.PLANNER, new Function<RelOptPlanner, Void>() {
@Override
public Void apply(RelOptPlanner planner) {
planner.removeRule(IntersectToDistinctRule.INSTANCE);
return null;
}
}).explainContains("" + "PLAN=EnumerableIntersect(all=[false])").returnsUnordered("empid=150; name=Sebastian");
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project calcite by apache.
the class AbstractMaterializedViewRule method perform.
/**
* Rewriting logic is based on "Optimizing Queries Using Materialized Views:
* A Practical, Scalable Solution" by Goldstein and Larson.
*
* <p>On the query side, rules matches a Project-node chain or node, where node
* is either an Aggregate or a Join. Subplan rooted at the node operator must
* be composed of one or more of the following operators: TableScan, Project,
* Filter, and Join.
*
* <p>For each join MV, we need to check the following:
* <ol>
* <li> The plan rooted at the Join operator in the view produces all rows
* needed by the plan rooted at the Join operator in the query.</li>
* <li> All columns required by compensating predicates, i.e., predicates that
* need to be enforced over the view, are available at the view output.</li>
* <li> All output expressions can be computed from the output of the view.</li>
* <li> All output rows occur with the correct duplication factor. We might
* rely on existing Unique-Key - Foreign-Key relationships to extract that
* information.</li>
* </ol>
*
* <p>In turn, for each aggregate MV, we need to check the following:
* <ol>
* <li> The plan rooted at the Aggregate operator in the view produces all rows
* needed by the plan rooted at the Aggregate operator in the query.</li>
* <li> All columns required by compensating predicates, i.e., predicates that
* need to be enforced over the view, are available at the view output.</li>
* <li> The grouping columns in the query are a subset of the grouping columns
* in the view.</li>
* <li> All columns required to perform further grouping are available in the
* view output.</li>
* <li> All columns required to compute output expressions are available in the
* view output.</li>
* </ol>
*
* <p>The rule contains multiple extensions compared to the original paper. One of
* them is the possibility of creating rewritings using Union operators, e.g., if
* the result of a query is partially contained in the materialized view.
*/
protected void perform(RelOptRuleCall call, Project topProject, RelNode node) {
final RexBuilder rexBuilder = node.getCluster().getRexBuilder();
final RelMetadataQuery mq = RelMetadataQuery.instance();
final RelOptPlanner planner = call.getPlanner();
final RexExecutor executor = Util.first(planner.getExecutor(), RexUtil.EXECUTOR);
final RelOptPredicateList predicates = RelOptPredicateList.EMPTY;
final RexSimplify simplify = new RexSimplify(rexBuilder, predicates, true, executor);
final List<RelOptMaterialization> materializations = (planner instanceof VolcanoPlanner) ? ((VolcanoPlanner) planner).getMaterializations() : ImmutableList.<RelOptMaterialization>of();
if (!materializations.isEmpty()) {
// try to generate a rewriting are met
if (!isValidPlan(topProject, node, mq)) {
return;
}
// Obtain applicable (filtered) materializations
// TODO: Filtering of relevant materializations needs to be
// improved so we gather only materializations that might
// actually generate a valid rewriting.
final List<RelOptMaterialization> applicableMaterializations = RelOptMaterializations.getApplicableMaterializations(node, materializations);
if (!applicableMaterializations.isEmpty()) {
// 2. Initialize all query related auxiliary data structures
// that will be used throughout query rewriting process
// Generate query table references
final Set<RelTableRef> queryTableRefs = mq.getTableReferences(node);
if (queryTableRefs == null) {
// Bail out
return;
}
// Extract query predicates
final RelOptPredicateList queryPredicateList = mq.getAllPredicates(node);
if (queryPredicateList == null) {
// Bail out
return;
}
final RexNode pred = simplify.simplify(RexUtil.composeConjunction(rexBuilder, queryPredicateList.pulledUpPredicates, false));
final Triple<RexNode, RexNode, RexNode> queryPreds = splitPredicates(rexBuilder, pred);
// Extract query equivalence classes. An equivalence class is a set
// of columns in the query output that are known to be equal.
final EquivalenceClasses qEC = new EquivalenceClasses();
for (RexNode conj : RelOptUtil.conjunctions(queryPreds.getLeft())) {
assert conj.isA(SqlKind.EQUALS);
RexCall equiCond = (RexCall) conj;
qEC.addEquivalenceClass((RexTableInputRef) equiCond.getOperands().get(0), (RexTableInputRef) equiCond.getOperands().get(1));
}
// rewrite the given query
for (RelOptMaterialization materialization : applicableMaterializations) {
RelNode view = materialization.tableRel;
Project topViewProject;
RelNode viewNode;
if (materialization.queryRel instanceof Project) {
topViewProject = (Project) materialization.queryRel;
viewNode = topViewProject.getInput();
} else {
topViewProject = null;
viewNode = materialization.queryRel;
}
// 3.1. View checks before proceeding
if (!isValidPlan(topViewProject, viewNode, mq)) {
// Skip it
continue;
}
// 3.2. Initialize all query related auxiliary data structures
// that will be used throughout query rewriting process
// Extract view predicates
final RelOptPredicateList viewPredicateList = mq.getAllPredicates(viewNode);
if (viewPredicateList == null) {
// Skip it
continue;
}
final RexNode viewPred = simplify.simplify(RexUtil.composeConjunction(rexBuilder, viewPredicateList.pulledUpPredicates, false));
final Triple<RexNode, RexNode, RexNode> viewPreds = splitPredicates(rexBuilder, viewPred);
// Extract view table references
final Set<RelTableRef> viewTableRefs = mq.getTableReferences(viewNode);
if (viewTableRefs == null) {
// Bail out
return;
}
// Extract view tables
MatchModality matchModality;
Multimap<RexTableInputRef, RexTableInputRef> compensationEquiColumns = ArrayListMultimap.create();
if (!queryTableRefs.equals(viewTableRefs)) {
// subset of query tables (add additional tables through joins if possible)
if (viewTableRefs.containsAll(queryTableRefs)) {
matchModality = MatchModality.QUERY_PARTIAL;
final EquivalenceClasses vEC = new EquivalenceClasses();
for (RexNode conj : RelOptUtil.conjunctions(viewPreds.getLeft())) {
assert conj.isA(SqlKind.EQUALS);
RexCall equiCond = (RexCall) conj;
vEC.addEquivalenceClass((RexTableInputRef) equiCond.getOperands().get(0), (RexTableInputRef) equiCond.getOperands().get(1));
}
if (!compensatePartial(viewTableRefs, vEC, queryTableRefs, compensationEquiColumns)) {
// Cannot rewrite, skip it
continue;
}
} else if (queryTableRefs.containsAll(viewTableRefs)) {
matchModality = MatchModality.VIEW_PARTIAL;
ViewPartialRewriting partialRewritingResult = compensateViewPartial(call.builder(), rexBuilder, mq, view, topProject, node, queryTableRefs, qEC, topViewProject, viewNode, viewTableRefs);
if (partialRewritingResult == null) {
// Cannot rewrite, skip it
continue;
}
// Rewrite succeeded
view = partialRewritingResult.newView;
topViewProject = partialRewritingResult.newTopViewProject;
viewNode = partialRewritingResult.newViewNode;
} else {
// Skip it
continue;
}
} else {
matchModality = MatchModality.COMPLETE;
}
// 4. We map every table in the query to a table with the same qualified
// name (all query tables are contained in the view, thus this is equivalent
// to mapping every table in the query to a view table).
final Multimap<RelTableRef, RelTableRef> multiMapTables = ArrayListMultimap.create();
for (RelTableRef queryTableRef1 : queryTableRefs) {
for (RelTableRef queryTableRef2 : queryTableRefs) {
if (queryTableRef1.getQualifiedName().equals(queryTableRef2.getQualifiedName())) {
multiMapTables.put(queryTableRef1, queryTableRef2);
}
}
}
// If a table is used multiple times, we will create multiple mappings,
// and we will try to rewrite the query using each of the mappings.
// Then, we will try to map every source table (query) to a target
// table (view), and if we are successful, we will try to create
// compensation predicates to filter the view results further
// (if needed).
final List<BiMap<RelTableRef, RelTableRef>> flatListMappings = generateTableMappings(multiMapTables);
for (BiMap<RelTableRef, RelTableRef> queryToViewTableMapping : flatListMappings) {
// TableMapping : mapping query tables -> view tables
// 4.0. If compensation equivalence classes exist, we need to add
// the mapping to the query mapping
final EquivalenceClasses currQEC = EquivalenceClasses.copy(qEC);
if (matchModality == MatchModality.QUERY_PARTIAL) {
for (Entry<RexTableInputRef, RexTableInputRef> e : compensationEquiColumns.entries()) {
// Copy origin
RelTableRef queryTableRef = queryToViewTableMapping.inverse().get(e.getKey().getTableRef());
RexTableInputRef queryColumnRef = RexTableInputRef.of(queryTableRef, e.getKey().getIndex(), e.getKey().getType());
// Add to query equivalence classes and table mapping
currQEC.addEquivalenceClass(queryColumnRef, e.getValue());
queryToViewTableMapping.put(e.getValue().getTableRef(), // identity
e.getValue().getTableRef());
}
}
// 4.1. Compute compensation predicates, i.e., predicates that need to be
// enforced over the view to retain query semantics. The resulting predicates
// are expressed using {@link RexTableInputRef} over the query.
// First, to establish relationship, we swap column references of the view
// predicates to point to query tables and compute equivalence classes.
final RexNode viewColumnsEquiPred = RexUtil.swapTableReferences(rexBuilder, viewPreds.getLeft(), queryToViewTableMapping.inverse());
final EquivalenceClasses queryBasedVEC = new EquivalenceClasses();
for (RexNode conj : RelOptUtil.conjunctions(viewColumnsEquiPred)) {
assert conj.isA(SqlKind.EQUALS);
RexCall equiCond = (RexCall) conj;
queryBasedVEC.addEquivalenceClass((RexTableInputRef) equiCond.getOperands().get(0), (RexTableInputRef) equiCond.getOperands().get(1));
}
Triple<RexNode, RexNode, RexNode> compensationPreds = computeCompensationPredicates(rexBuilder, simplify, currQEC, queryPreds, queryBasedVEC, viewPreds, queryToViewTableMapping);
if (compensationPreds == null && generateUnionRewriting) {
// Attempt partial rewriting using union operator. This rewriting
// will read some data from the view and the rest of the data from
// the query computation. The resulting predicates are expressed
// using {@link RexTableInputRef} over the view.
compensationPreds = computeCompensationPredicates(rexBuilder, simplify, queryBasedVEC, viewPreds, currQEC, queryPreds, queryToViewTableMapping.inverse());
if (compensationPreds == null) {
// This was our last chance to use the view, skip it
continue;
}
RexNode compensationColumnsEquiPred = compensationPreds.getLeft();
RexNode otherCompensationPred = RexUtil.composeConjunction(rexBuilder, ImmutableList.of(compensationPreds.getMiddle(), compensationPreds.getRight()), false);
assert !compensationColumnsEquiPred.isAlwaysTrue() || !otherCompensationPred.isAlwaysTrue();
// b. Generate union branch (query).
final RelNode unionInputQuery = rewriteQuery(call.builder(), rexBuilder, simplify, mq, compensationColumnsEquiPred, otherCompensationPred, topProject, node, queryToViewTableMapping, queryBasedVEC, currQEC);
if (unionInputQuery == null) {
// Skip it
continue;
}
// c. Generate union branch (view).
// We trigger the unifying method. This method will either create a Project
// or an Aggregate operator on top of the view. It will also compute the
// output expressions for the query.
final RelNode unionInputView = rewriteView(call.builder(), rexBuilder, simplify, mq, matchModality, true, view, topProject, node, topViewProject, viewNode, queryToViewTableMapping, currQEC);
if (unionInputView == null) {
// Skip it
continue;
}
// d. Generate final rewriting (union).
final RelNode result = createUnion(call.builder(), rexBuilder, topProject, unionInputQuery, unionInputView);
if (result == null) {
// Skip it
continue;
}
call.transformTo(result);
} else if (compensationPreds != null) {
RexNode compensationColumnsEquiPred = compensationPreds.getLeft();
RexNode otherCompensationPred = RexUtil.composeConjunction(rexBuilder, ImmutableList.of(compensationPreds.getMiddle(), compensationPreds.getRight()), false);
// a. Compute final compensation predicate.
if (!compensationColumnsEquiPred.isAlwaysTrue() || !otherCompensationPred.isAlwaysTrue()) {
// All columns required by compensating predicates must be contained
// in the view output (condition 2).
List<RexNode> viewExprs = topViewProject == null ? extractReferences(rexBuilder, view) : topViewProject.getChildExps();
// since we want to enforce the rest
if (!compensationColumnsEquiPred.isAlwaysTrue()) {
compensationColumnsEquiPred = rewriteExpression(rexBuilder, mq, view, viewNode, viewExprs, queryToViewTableMapping.inverse(), queryBasedVEC, false, compensationColumnsEquiPred);
if (compensationColumnsEquiPred == null) {
// Skip it
continue;
}
}
// For the rest, we use the query equivalence classes
if (!otherCompensationPred.isAlwaysTrue()) {
otherCompensationPred = rewriteExpression(rexBuilder, mq, view, viewNode, viewExprs, queryToViewTableMapping.inverse(), currQEC, true, otherCompensationPred);
if (otherCompensationPred == null) {
// Skip it
continue;
}
}
}
final RexNode viewCompensationPred = RexUtil.composeConjunction(rexBuilder, ImmutableList.of(compensationColumnsEquiPred, otherCompensationPred), false);
// b. Generate final rewriting if possible.
// First, we add the compensation predicate (if any) on top of the view.
// Then, we trigger the unifying method. This method will either create a
// Project or an Aggregate operator on top of the view. It will also compute
// the output expressions for the query.
RelBuilder builder = call.builder();
RelNode viewWithFilter;
if (!viewCompensationPred.isAlwaysTrue()) {
RexNode newPred = simplify.simplify(viewCompensationPred);
viewWithFilter = builder.push(view).filter(newPred).build();
// We add (and push) the filter to the view plan before triggering the rewriting.
// This is useful in case some of the columns can be folded to same value after
// filter is added.
Pair<RelNode, RelNode> pushedNodes = pushFilterToOriginalViewPlan(builder, topViewProject, viewNode, newPred);
topViewProject = (Project) pushedNodes.left;
viewNode = pushedNodes.right;
} else {
viewWithFilter = builder.push(view).build();
}
final RelNode result = rewriteView(builder, rexBuilder, simplify, mq, matchModality, false, viewWithFilter, topProject, node, topViewProject, viewNode, queryToViewTableMapping, currQEC);
if (result == null) {
// Skip it
continue;
}
call.transformTo(result);
}
// end else
}
}
}
}
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project calcite by apache.
the class Programs method heuristicJoinOrder.
/**
* Creates a program that invokes heuristic join-order optimization
* (via {@link org.apache.calcite.rel.rules.JoinToMultiJoinRule},
* {@link org.apache.calcite.rel.rules.MultiJoin} and
* {@link org.apache.calcite.rel.rules.LoptOptimizeJoinRule})
* if there are 6 or more joins (7 or more relations).
*/
public static Program heuristicJoinOrder(final Iterable<? extends RelOptRule> rules, final boolean bushy, final int minJoinCount) {
return new Program() {
public RelNode run(RelOptPlanner planner, RelNode rel, RelTraitSet requiredOutputTraits, List<RelOptMaterialization> materializations, List<RelOptLattice> lattices) {
final int joinCount = RelOptUtil.countJoins(rel);
final Program program;
if (joinCount < minJoinCount) {
program = ofRules(rules);
} else {
// Create a program that gathers together joins as a MultiJoin.
final HepProgram hep = new HepProgramBuilder().addRuleInstance(FilterJoinRule.FILTER_ON_JOIN).addMatchOrder(HepMatchOrder.BOTTOM_UP).addRuleInstance(JoinToMultiJoinRule.INSTANCE).build();
final Program program1 = of(hep, false, DefaultRelMetadataProvider.INSTANCE);
// Create a program that contains a rule to expand a MultiJoin
// into heuristically ordered joins.
// We use the rule set passed in, but remove JoinCommuteRule and
// JoinPushThroughJoinRule, because they cause exhaustive search.
final List<RelOptRule> list = Lists.newArrayList(rules);
list.removeAll(ImmutableList.of(JoinCommuteRule.INSTANCE, JoinAssociateRule.INSTANCE, JoinPushThroughJoinRule.LEFT, JoinPushThroughJoinRule.RIGHT));
list.add(bushy ? MultiJoinOptimizeBushyRule.INSTANCE : LoptOptimizeJoinRule.INSTANCE);
final Program program2 = ofRules(list);
program = sequence(program1, program2);
}
return program.run(planner, rel, requiredOutputTraits, materializations, lattices);
}
};
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.plan.RelOptPlanner in project calcite by apache.
the class CalcitePrepareImpl method prepare_.
<T> CalciteSignature<T> prepare_(Context context, Query<T> query, Type elementType, long maxRowCount) {
if (SIMPLE_SQLS.contains(query.sql)) {
return simplePrepare(context, query.sql);
}
final JavaTypeFactory typeFactory = context.getTypeFactory();
CalciteCatalogReader catalogReader = new CalciteCatalogReader(context.getRootSchema(), context.getDefaultSchemaPath(), typeFactory, context.config());
final List<Function1<Context, RelOptPlanner>> plannerFactories = createPlannerFactories();
if (plannerFactories.isEmpty()) {
throw new AssertionError("no planner factories");
}
RuntimeException exception = Util.FoundOne.NULL;
for (Function1<Context, RelOptPlanner> plannerFactory : plannerFactories) {
final RelOptPlanner planner = plannerFactory.apply(context);
if (planner == null) {
throw new AssertionError("factory returned null planner");
}
try {
return prepare2_(context, query, elementType, maxRowCount, catalogReader, planner);
} catch (RelOptPlanner.CannotPlanException e) {
exception = e;
}
}
throw exception;
}
Aggregations