use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.core.Aggregate in project hive by apache.
the class HiveSemiJoinRule method onMatch.
@Override
public void onMatch(RelOptRuleCall call) {
LOG.debug("Matched HiveSemiJoinRule");
final Project project = call.rel(0);
final Join join = call.rel(1);
final RelNode left = call.rel(2);
final Aggregate aggregate = call.rel(3);
final RelOptCluster cluster = join.getCluster();
final RexBuilder rexBuilder = cluster.getRexBuilder();
final ImmutableBitSet bits = RelOptUtil.InputFinder.bits(project.getProjects(), null);
final ImmutableBitSet rightBits = ImmutableBitSet.range(left.getRowType().getFieldCount(), join.getRowType().getFieldCount());
if (bits.intersects(rightBits)) {
return;
}
final JoinInfo joinInfo = join.analyzeCondition();
if (!joinInfo.rightSet().equals(ImmutableBitSet.range(aggregate.getGroupCount()))) {
// By the way, neither a super-set nor a sub-set would work.
return;
}
if (join.getJoinType() == JoinRelType.LEFT) {
// since for LEFT join we are only interested in rows from LEFT we can get rid of right side
call.transformTo(call.builder().push(left).project(project.getProjects(), project.getRowType().getFieldNames()).build());
return;
}
if (join.getJoinType() != JoinRelType.INNER) {
return;
}
if (!joinInfo.isEqui()) {
return;
}
LOG.debug("All conditions matched for HiveSemiJoinRule. Going to apply transformation.");
final List<Integer> newRightKeyBuilder = Lists.newArrayList();
final List<Integer> aggregateKeys = aggregate.getGroupSet().asList();
for (int key : joinInfo.rightKeys) {
newRightKeyBuilder.add(aggregateKeys.get(key));
}
final ImmutableIntList newRightKeys = ImmutableIntList.copyOf(newRightKeyBuilder);
final RelNode newRight = aggregate.getInput();
final RexNode newCondition = RelOptUtil.createEquiJoinCondition(left, joinInfo.leftKeys, newRight, newRightKeys, rexBuilder);
RelNode semi = null;
// is not expected further down the pipeline. see jira for more details
if (aggregate.getInput() instanceof HepRelVertex && ((HepRelVertex) aggregate.getInput()).getCurrentRel() instanceof Join) {
Join rightJoin = (Join) (((HepRelVertex) aggregate.getInput()).getCurrentRel());
List<RexNode> projects = new ArrayList<>();
for (int i = 0; i < rightJoin.getRowType().getFieldCount(); i++) {
projects.add(rexBuilder.makeInputRef(rightJoin, i));
}
RelNode topProject = call.builder().push(rightJoin).project(projects, rightJoin.getRowType().getFieldNames(), true).build();
semi = call.builder().push(left).push(topProject).semiJoin(newCondition).build();
} else {
semi = call.builder().push(left).push(aggregate.getInput()).semiJoin(newCondition).build();
}
call.transformTo(call.builder().push(semi).project(project.getProjects(), project.getRowType().getFieldNames()).build());
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.core.Aggregate in project flink by apache.
the class FlinkAggregateExpandDistinctAggregatesRule method onMatch.
//~ Methods ----------------------------------------------------------------
public void onMatch(RelOptRuleCall call) {
final Aggregate aggregate = call.rel(0);
if (!aggregate.containsDistinctCall()) {
return;
}
// Find all of the agg expressions. We use a LinkedHashSet to ensure
// determinism.
int nonDistinctCount = 0;
int distinctCount = 0;
int filterCount = 0;
int unsupportedAggCount = 0;
final Set<Pair<List<Integer>, Integer>> argLists = new LinkedHashSet<>();
for (AggregateCall aggCall : aggregate.getAggCallList()) {
if (aggCall.filterArg >= 0) {
++filterCount;
}
if (!aggCall.isDistinct()) {
++nonDistinctCount;
if (!(aggCall.getAggregation() instanceof SqlCountAggFunction || aggCall.getAggregation() instanceof SqlSumAggFunction || aggCall.getAggregation() instanceof SqlMinMaxAggFunction)) {
++unsupportedAggCount;
}
continue;
}
++distinctCount;
argLists.add(Pair.of(aggCall.getArgList(), aggCall.filterArg));
}
Preconditions.checkState(argLists.size() > 0, "containsDistinctCall lied");
// arguments then we can use a more efficient form.
if (nonDistinctCount == 0 && argLists.size() == 1) {
final Pair<List<Integer>, Integer> pair = Iterables.getOnlyElement(argLists);
final RelBuilder relBuilder = call.builder();
convertMonopole(relBuilder, aggregate, pair.left, pair.right);
call.transformTo(relBuilder.build());
return;
}
if (useGroupingSets) {
rewriteUsingGroupingSets(call, aggregate, argLists);
return;
}
// we can generate multi-phase aggregates
if (// one distinct aggregate
distinctCount == 1 && // no filter
filterCount == 0 && // sum/min/max/count in non-distinct aggregate
unsupportedAggCount == 0 && nonDistinctCount > 0) {
// one or more non-distinct aggregates
final RelBuilder relBuilder = call.builder();
convertSingletonDistinct(relBuilder, aggregate, argLists);
call.transformTo(relBuilder.build());
return;
}
// Create a list of the expressions which will yield the final result.
// Initially, the expressions point to the input field.
final List<RelDataTypeField> aggFields = aggregate.getRowType().getFieldList();
final List<RexInputRef> refs = new ArrayList<>();
final List<String> fieldNames = aggregate.getRowType().getFieldNames();
final ImmutableBitSet groupSet = aggregate.getGroupSet();
final int groupAndIndicatorCount = aggregate.getGroupCount() + aggregate.getIndicatorCount();
for (int i : Util.range(groupAndIndicatorCount)) {
refs.add(RexInputRef.of(i, aggFields));
}
// Aggregate the original relation, including any non-distinct aggregates.
final List<AggregateCall> newAggCallList = new ArrayList<>();
int i = -1;
for (AggregateCall aggCall : aggregate.getAggCallList()) {
++i;
if (aggCall.isDistinct()) {
refs.add(null);
continue;
}
refs.add(new RexInputRef(groupAndIndicatorCount + newAggCallList.size(), aggFields.get(groupAndIndicatorCount + i).getType()));
newAggCallList.add(aggCall);
}
// In the case where there are no non-distinct aggregates (regardless of
// whether there are group bys), there's no need to generate the
// extra aggregate and join.
final RelBuilder relBuilder = call.builder();
relBuilder.push(aggregate.getInput());
int n = 0;
if (!newAggCallList.isEmpty()) {
final RelBuilder.GroupKey groupKey = relBuilder.groupKey(groupSet, aggregate.indicator, aggregate.getGroupSets());
relBuilder.aggregate(groupKey, newAggCallList);
++n;
}
// set of operands.
for (Pair<List<Integer>, Integer> argList : argLists) {
doRewrite(relBuilder, aggregate, n++, argList.left, argList.right, refs);
}
relBuilder.project(refs, fieldNames);
call.transformTo(relBuilder.build());
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.core.Aggregate in project hive by apache.
the class HiveExpandDistinctAggregatesRule method convert.
/**
* Converts an aggregate relational expression that contains only
* count(distinct) to grouping sets with count. For example select
* count(distinct department_id), count(distinct gender), count(distinct
* education_level) from employee; can be transformed to
* select
* count(case when i=1 and department_id is not null then 1 else null end) as c0,
* count(case when i=2 and gender is not null then 1 else null end) as c1,
* count(case when i=4 and education_level is not null then 1 else null end) as c2
* from (select
* grouping__id as i, department_id, gender, education_level from employee
* group by department_id, gender, education_level grouping sets
* (department_id, gender, education_level))subq;
* @throws CalciteSemanticException
*/
private RelNode convert(Aggregate aggregate, List<List<Integer>> argList, List<Integer> sourceOfForCountDistinct) throws CalciteSemanticException {
// we use this map to map the position of argList to the position of grouping set
Map<Integer, Integer> map = new HashMap<>();
List<List<Integer>> cleanArgList = new ArrayList<>();
final Aggregate groupingSets = createGroupingSets(aggregate, argList, cleanArgList, map, sourceOfForCountDistinct);
return createCount(groupingSets, argList, cleanArgList, map, sourceOfForCountDistinct);
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.core.Aggregate in project calcite by apache.
the class AggregateExpandDistinctAggregatesRule method onMatch.
// ~ Methods ----------------------------------------------------------------
public void onMatch(RelOptRuleCall call) {
final Aggregate aggregate = call.rel(0);
if (!aggregate.containsDistinctCall()) {
return;
}
// Find all of the agg expressions. We use a LinkedHashSet to ensure determinism.
// find all aggregate calls without distinct
int nonDistinctAggCallCount = 0;
int filterCount = 0;
int unsupportedNonDistinctAggCallCount = 0;
final Set<Pair<List<Integer>, Integer>> argLists = new LinkedHashSet<>();
for (AggregateCall aggCall : aggregate.getAggCallList()) {
if (aggCall.filterArg >= 0) {
++filterCount;
}
if (!aggCall.isDistinct()) {
++nonDistinctAggCallCount;
final SqlKind aggCallKind = aggCall.getAggregation().getKind();
// We only support COUNT/SUM/MIN/MAX for the "single" count distinct optimization
switch(aggCallKind) {
case COUNT:
case SUM:
case SUM0:
case MIN:
case MAX:
break;
default:
++unsupportedNonDistinctAggCallCount;
}
} else {
argLists.add(Pair.of(aggCall.getArgList(), aggCall.filterArg));
}
}
final int distinctAggCallCount = aggregate.getAggCallList().size() - nonDistinctAggCallCount;
Preconditions.checkState(argLists.size() > 0, "containsDistinctCall lied");
// arguments then we can use a more efficient form.
if (nonDistinctAggCallCount == 0 && argLists.size() == 1 && aggregate.getGroupType() == Group.SIMPLE) {
final Pair<List<Integer>, Integer> pair = Iterables.getOnlyElement(argLists);
final RelBuilder relBuilder = call.builder();
convertMonopole(relBuilder, aggregate, pair.left, pair.right);
call.transformTo(relBuilder.build());
return;
}
if (useGroupingSets) {
rewriteUsingGroupingSets(call, aggregate);
return;
}
// we can generate multi-phase aggregates
if (// one distinct aggregate
distinctAggCallCount == 1 && // no filter
filterCount == 0 && // sum/min/max/count in non-distinct aggregate
unsupportedNonDistinctAggCallCount == 0 && nonDistinctAggCallCount > 0) {
// one or more non-distinct aggregates
final RelBuilder relBuilder = call.builder();
convertSingletonDistinct(relBuilder, aggregate, argLists);
call.transformTo(relBuilder.build());
return;
}
// Create a list of the expressions which will yield the final result.
// Initially, the expressions point to the input field.
final List<RelDataTypeField> aggFields = aggregate.getRowType().getFieldList();
final List<RexInputRef> refs = new ArrayList<>();
final List<String> fieldNames = aggregate.getRowType().getFieldNames();
final ImmutableBitSet groupSet = aggregate.getGroupSet();
final int groupAndIndicatorCount = aggregate.getGroupCount() + aggregate.getIndicatorCount();
for (int i : Util.range(groupAndIndicatorCount)) {
refs.add(RexInputRef.of(i, aggFields));
}
// Aggregate the original relation, including any non-distinct aggregates.
final List<AggregateCall> newAggCallList = new ArrayList<>();
int i = -1;
for (AggregateCall aggCall : aggregate.getAggCallList()) {
++i;
if (aggCall.isDistinct()) {
refs.add(null);
continue;
}
refs.add(new RexInputRef(groupAndIndicatorCount + newAggCallList.size(), aggFields.get(groupAndIndicatorCount + i).getType()));
newAggCallList.add(aggCall);
}
// In the case where there are no non-distinct aggregates (regardless of
// whether there are group bys), there's no need to generate the
// extra aggregate and join.
final RelBuilder relBuilder = call.builder();
relBuilder.push(aggregate.getInput());
int n = 0;
if (!newAggCallList.isEmpty()) {
final RelBuilder.GroupKey groupKey = relBuilder.groupKey(groupSet, aggregate.getGroupSets());
relBuilder.aggregate(groupKey, newAggCallList);
++n;
}
// set of operands.
for (Pair<List<Integer>, Integer> argList : argLists) {
doRewrite(relBuilder, aggregate, n++, argList.left, argList.right, refs);
}
relBuilder.project(refs, fieldNames);
call.transformTo(relBuilder.build());
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.core.Aggregate in project calcite by apache.
the class AggregateJoinTransposeRule method onMatch.
public void onMatch(RelOptRuleCall call) {
final Aggregate aggregate = call.rel(0);
final Join join = call.rel(1);
final RexBuilder rexBuilder = aggregate.getCluster().getRexBuilder();
final RelBuilder relBuilder = call.builder();
// If any aggregate call has a filter, bail out
for (AggregateCall aggregateCall : aggregate.getAggCallList()) {
if (aggregateCall.getAggregation().unwrap(SqlSplittableAggFunction.class) == null) {
return;
}
if (aggregateCall.filterArg >= 0) {
return;
}
}
// aggregate operator
if (join.getJoinType() != JoinRelType.INNER) {
return;
}
if (!allowFunctions && !aggregate.getAggCallList().isEmpty()) {
return;
}
// Do the columns used by the join appear in the output of the aggregate?
final ImmutableBitSet aggregateColumns = aggregate.getGroupSet();
final RelMetadataQuery mq = call.getMetadataQuery();
final ImmutableBitSet keyColumns = keyColumns(aggregateColumns, mq.getPulledUpPredicates(join).pulledUpPredicates);
final ImmutableBitSet joinColumns = RelOptUtil.InputFinder.bits(join.getCondition());
final boolean allColumnsInAggregate = keyColumns.contains(joinColumns);
final ImmutableBitSet belowAggregateColumns = aggregateColumns.union(joinColumns);
// Split join condition
final List<Integer> leftKeys = Lists.newArrayList();
final List<Integer> rightKeys = Lists.newArrayList();
final List<Boolean> filterNulls = Lists.newArrayList();
RexNode nonEquiConj = RelOptUtil.splitJoinCondition(join.getLeft(), join.getRight(), join.getCondition(), leftKeys, rightKeys, filterNulls);
// If it contains non-equi join conditions, we bail out
if (!nonEquiConj.isAlwaysTrue()) {
return;
}
// Push each aggregate function down to each side that contains all of its
// arguments. Note that COUNT(*), because it has no arguments, can go to
// both sides.
final Map<Integer, Integer> map = new HashMap<>();
final List<Side> sides = new ArrayList<>();
int uniqueCount = 0;
int offset = 0;
int belowOffset = 0;
for (int s = 0; s < 2; s++) {
final Side side = new Side();
final RelNode joinInput = join.getInput(s);
int fieldCount = joinInput.getRowType().getFieldCount();
final ImmutableBitSet fieldSet = ImmutableBitSet.range(offset, offset + fieldCount);
final ImmutableBitSet belowAggregateKeyNotShifted = belowAggregateColumns.intersect(fieldSet);
for (Ord<Integer> c : Ord.zip(belowAggregateKeyNotShifted)) {
map.put(c.e, belowOffset + c.i);
}
final Mappings.TargetMapping mapping = s == 0 ? Mappings.createIdentity(fieldCount) : Mappings.createShiftMapping(fieldCount + offset, 0, offset, fieldCount);
final ImmutableBitSet belowAggregateKey = belowAggregateKeyNotShifted.shift(-offset);
final boolean unique;
if (!allowFunctions) {
assert aggregate.getAggCallList().isEmpty();
// If there are no functions, it doesn't matter as much whether we
// aggregate the inputs before the join, because there will not be
// any functions experiencing a cartesian product effect.
//
// But finding out whether the input is already unique requires a call
// to areColumnsUnique that currently (until [CALCITE-1048] "Make
// metadata more robust" is fixed) places a heavy load on
// the metadata system.
//
// So we choose to imagine the the input is already unique, which is
// untrue but harmless.
//
Util.discard(Bug.CALCITE_1048_FIXED);
unique = true;
} else {
final Boolean unique0 = mq.areColumnsUnique(joinInput, belowAggregateKey);
unique = unique0 != null && unique0;
}
if (unique) {
++uniqueCount;
side.aggregate = false;
relBuilder.push(joinInput);
final List<RexNode> projects = new ArrayList<>();
for (Integer i : belowAggregateKey) {
projects.add(relBuilder.field(i));
}
for (Ord<AggregateCall> aggCall : Ord.zip(aggregate.getAggCallList())) {
final SqlAggFunction aggregation = aggCall.e.getAggregation();
final SqlSplittableAggFunction splitter = Preconditions.checkNotNull(aggregation.unwrap(SqlSplittableAggFunction.class));
if (!aggCall.e.getArgList().isEmpty() && fieldSet.contains(ImmutableBitSet.of(aggCall.e.getArgList()))) {
final RexNode singleton = splitter.singleton(rexBuilder, joinInput.getRowType(), aggCall.e.transform(mapping));
if (singleton instanceof RexInputRef) {
side.split.put(aggCall.i, ((RexInputRef) singleton).getIndex());
} else {
projects.add(singleton);
side.split.put(aggCall.i, projects.size() - 1);
}
}
}
relBuilder.project(projects);
side.newInput = relBuilder.build();
} else {
side.aggregate = true;
List<AggregateCall> belowAggCalls = new ArrayList<>();
final SqlSplittableAggFunction.Registry<AggregateCall> belowAggCallRegistry = registry(belowAggCalls);
final int oldGroupKeyCount = aggregate.getGroupCount();
final int newGroupKeyCount = belowAggregateKey.cardinality();
for (Ord<AggregateCall> aggCall : Ord.zip(aggregate.getAggCallList())) {
final SqlAggFunction aggregation = aggCall.e.getAggregation();
final SqlSplittableAggFunction splitter = Preconditions.checkNotNull(aggregation.unwrap(SqlSplittableAggFunction.class));
final AggregateCall call1;
if (fieldSet.contains(ImmutableBitSet.of(aggCall.e.getArgList()))) {
final AggregateCall splitCall = splitter.split(aggCall.e, mapping);
call1 = splitCall.adaptTo(joinInput, splitCall.getArgList(), splitCall.filterArg, oldGroupKeyCount, newGroupKeyCount);
} else {
call1 = splitter.other(rexBuilder.getTypeFactory(), aggCall.e);
}
if (call1 != null) {
side.split.put(aggCall.i, belowAggregateKey.cardinality() + belowAggCallRegistry.register(call1));
}
}
side.newInput = relBuilder.push(joinInput).aggregate(relBuilder.groupKey(belowAggregateKey, null), belowAggCalls).build();
}
offset += fieldCount;
belowOffset += side.newInput.getRowType().getFieldCount();
sides.add(side);
}
if (uniqueCount == 2) {
// invocation of this rule; if we continue we might loop forever.
return;
}
// Update condition
final Mapping mapping = (Mapping) Mappings.target(new Function<Integer, Integer>() {
public Integer apply(Integer a0) {
return map.get(a0);
}
}, join.getRowType().getFieldCount(), belowOffset);
final RexNode newCondition = RexUtil.apply(mapping, join.getCondition());
// Create new join
relBuilder.push(sides.get(0).newInput).push(sides.get(1).newInput).join(join.getJoinType(), newCondition);
// Aggregate above to sum up the sub-totals
final List<AggregateCall> newAggCalls = new ArrayList<>();
final int groupIndicatorCount = aggregate.getGroupCount() + aggregate.getIndicatorCount();
final int newLeftWidth = sides.get(0).newInput.getRowType().getFieldCount();
final List<RexNode> projects = new ArrayList<>(rexBuilder.identityProjects(relBuilder.peek().getRowType()));
for (Ord<AggregateCall> aggCall : Ord.zip(aggregate.getAggCallList())) {
final SqlAggFunction aggregation = aggCall.e.getAggregation();
final SqlSplittableAggFunction splitter = Preconditions.checkNotNull(aggregation.unwrap(SqlSplittableAggFunction.class));
final Integer leftSubTotal = sides.get(0).split.get(aggCall.i);
final Integer rightSubTotal = sides.get(1).split.get(aggCall.i);
newAggCalls.add(splitter.topSplit(rexBuilder, registry(projects), groupIndicatorCount, relBuilder.peek().getRowType(), aggCall.e, leftSubTotal == null ? -1 : leftSubTotal, rightSubTotal == null ? -1 : rightSubTotal + newLeftWidth));
}
relBuilder.project(projects);
boolean aggConvertedToProjects = false;
if (allColumnsInAggregate) {
// let's see if we can convert aggregate into projects
List<RexNode> projects2 = new ArrayList<>();
for (int key : Mappings.apply(mapping, aggregate.getGroupSet())) {
projects2.add(relBuilder.field(key));
}
for (AggregateCall newAggCall : newAggCalls) {
final SqlSplittableAggFunction splitter = newAggCall.getAggregation().unwrap(SqlSplittableAggFunction.class);
if (splitter != null) {
final RelDataType rowType = relBuilder.peek().getRowType();
projects2.add(splitter.singleton(rexBuilder, rowType, newAggCall));
}
}
if (projects2.size() == aggregate.getGroupSet().cardinality() + newAggCalls.size()) {
// We successfully converted agg calls into projects.
relBuilder.project(projects2);
aggConvertedToProjects = true;
}
}
if (!aggConvertedToProjects) {
relBuilder.aggregate(relBuilder.groupKey(Mappings.apply(mapping, aggregate.getGroupSet()), Mappings.apply2(mapping, aggregate.getGroupSets())), newAggCalls);
}
call.transformTo(relBuilder.build());
}
Aggregations