use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.logical.LogicalCalc in project calcite by apache.
the class EnumerableCalcRule method convert.
public RelNode convert(RelNode rel) {
final LogicalCalc calc = (LogicalCalc) rel;
final RelNode input = calc.getInput();
return EnumerableCalc.create(convert(input, input.getTraitSet().replace(EnumerableConvention.INSTANCE)), calc.getProgram());
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.logical.LogicalCalc in project calcite by apache.
the class FilterCalcMergeRule method onMatch.
// ~ Methods ----------------------------------------------------------------
public void onMatch(RelOptRuleCall call) {
final LogicalFilter filter = call.rel(0);
final LogicalCalc calc = call.rel(1);
// We'll have chance to merge later, when the over is expanded.
if (calc.getProgram().containsAggs()) {
return;
}
// Create a program containing the filter.
final RexBuilder rexBuilder = filter.getCluster().getRexBuilder();
final RexProgramBuilder progBuilder = new RexProgramBuilder(calc.getRowType(), rexBuilder);
progBuilder.addIdentity();
progBuilder.addCondition(filter.getCondition());
RexProgram topProgram = progBuilder.getProgram();
RexProgram bottomProgram = calc.getProgram();
// Merge the programs together.
RexProgram mergedProgram = RexProgramBuilder.mergePrograms(topProgram, bottomProgram, rexBuilder);
final LogicalCalc newCalc = LogicalCalc.create(calc.getInput(), mergedProgram);
call.transformTo(newCalc);
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.logical.LogicalCalc in project calcite by apache.
the class RelOptUtil method permute.
/**
* Creates a relational expression which permutes the output fields of a
* relational expression according to a permutation.
*
* <p>Optimizations:</p>
*
* <ul>
* <li>If the relational expression is a
* {@link org.apache.calcite.rel.logical.LogicalCalc} or
* {@link org.apache.calcite.rel.logical.LogicalProject} that is already
* acting as a permutation, combines the new permutation with the old;</li>
*
* <li>If the permutation is the identity, returns the original relational
* expression.</li>
* </ul>
*
* <p>If a permutation is combined with its inverse, these optimizations
* would combine to remove them both.
*
* @param rel Relational expression
* @param permutation Permutation to apply to fields
* @param fieldNames Field names; if null, or if a particular entry is null,
* the name of the permuted field is used
* @return relational expression which permutes its input fields
*/
public static RelNode permute(RelNode rel, Permutation permutation, List<String> fieldNames) {
if (permutation.isIdentity()) {
return rel;
}
if (rel instanceof LogicalCalc) {
LogicalCalc calc = (LogicalCalc) rel;
Permutation permutation1 = calc.getProgram().getPermutation();
if (permutation1 != null) {
Permutation permutation2 = permutation.product(permutation1);
return permute(rel, permutation2, null);
}
}
if (rel instanceof LogicalProject) {
Permutation permutation1 = ((LogicalProject) rel).getPermutation();
if (permutation1 != null) {
Permutation permutation2 = permutation.product(permutation1);
return permute(rel, permutation2, null);
}
}
final List<RelDataType> outputTypeList = new ArrayList<>();
final List<String> outputNameList = new ArrayList<>();
final List<RexNode> exprList = new ArrayList<>();
final List<RexLocalRef> projectRefList = new ArrayList<>();
final List<RelDataTypeField> fields = rel.getRowType().getFieldList();
final RelOptCluster cluster = rel.getCluster();
for (int i = 0; i < permutation.getTargetCount(); i++) {
int target = permutation.getTarget(i);
final RelDataTypeField targetField = fields.get(target);
outputTypeList.add(targetField.getType());
outputNameList.add(((fieldNames == null) || (fieldNames.size() <= i) || (fieldNames.get(i) == null)) ? targetField.getName() : fieldNames.get(i));
exprList.add(cluster.getRexBuilder().makeInputRef(fields.get(i).getType(), i));
final int source = permutation.getSource(i);
projectRefList.add(new RexLocalRef(source, fields.get(source).getType()));
}
final RelDataTypeFactory typeFactory = cluster.getTypeFactory();
final RexProgram program = new RexProgram(rel.getRowType(), exprList, projectRefList, null, typeFactory.createStructType(outputTypeList, outputNameList));
return LogicalCalc.create(rel, program);
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.logical.LogicalCalc in project calcite by apache.
the class ReduceDecimalsRule method onMatch.
// implement RelOptRule
public void onMatch(RelOptRuleCall call) {
LogicalCalc calc = call.rel(0);
// Expand decimals in every expression in this program. If no
// expression changes, don't apply the rule.
final RexProgram program = calc.getProgram();
if (!RexUtil.requiresDecimalExpansion(program, true)) {
return;
}
final RexBuilder rexBuilder = calc.getCluster().getRexBuilder();
final RexShuttle shuttle = new DecimalShuttle(rexBuilder);
RexProgramBuilder programBuilder = RexProgramBuilder.create(rexBuilder, calc.getInput().getRowType(), program.getExprList(), program.getProjectList(), program.getCondition(), program.getOutputRowType(), shuttle, true);
final RexProgram newProgram = programBuilder.getProgram();
LogicalCalc newCalc = LogicalCalc.create(calc.getInput(), newProgram);
call.transformTo(newCalc);
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.logical.LogicalCalc in project calcite by apache.
the class CalcRelSplitter method execute.
// ~ Methods ----------------------------------------------------------------
RelNode execute() {
// expressions to the left.
assert program.isValid(Litmus.THROW, null);
final List<RexNode> exprList = program.getExprList();
final RexNode[] exprs = exprList.toArray(new RexNode[exprList.size()]);
assert !RexUtil.containComplexExprs(exprList);
// Figure out what level each expression belongs to.
int[] exprLevels = new int[exprs.length];
// The type of a level is given by
// relTypes[levelTypeOrdinals[level]].
int[] levelTypeOrdinals = new int[exprs.length];
int levelCount = chooseLevels(exprs, -1, exprLevels, levelTypeOrdinals);
// For each expression, figure out which is the highest level where it
// is used.
int[] exprMaxUsingLevelOrdinals = new HighestUsageFinder(exprs, exprLevels).getMaxUsingLevelOrdinals();
// If expressions are used as outputs, mark them as higher than that.
final List<RexLocalRef> projectRefList = program.getProjectList();
final RexLocalRef conditionRef = program.getCondition();
for (RexLocalRef projectRef : projectRefList) {
exprMaxUsingLevelOrdinals[projectRef.getIndex()] = levelCount;
}
if (conditionRef != null) {
exprMaxUsingLevelOrdinals[conditionRef.getIndex()] = levelCount;
}
// Print out what we've got.
if (RULE_LOGGER.isTraceEnabled()) {
traceLevelExpressions(exprs, exprLevels, levelTypeOrdinals, levelCount);
}
// Now build the calcs.
RelNode rel = child;
final int inputFieldCount = program.getInputRowType().getFieldCount();
int[] inputExprOrdinals = identityArray(inputFieldCount);
boolean doneCondition = false;
for (int level = 0; level < levelCount; level++) {
final int[] projectExprOrdinals;
final RelDataType outputRowType;
if (level == (levelCount - 1)) {
outputRowType = program.getOutputRowType();
projectExprOrdinals = new int[projectRefList.size()];
for (int i = 0; i < projectExprOrdinals.length; i++) {
projectExprOrdinals[i] = projectRefList.get(i).getIndex();
}
} else {
outputRowType = null;
// Project the expressions which are computed at this level or
// before, and will be used at later levels.
List<Integer> projectExprOrdinalList = new ArrayList<>();
for (int i = 0; i < exprs.length; i++) {
RexNode expr = exprs[i];
if (expr instanceof RexLiteral) {
// Don't project literals. They are always created in
// the level where they are used.
exprLevels[i] = -1;
continue;
}
if ((exprLevels[i] <= level) && (exprMaxUsingLevelOrdinals[i] > level)) {
projectExprOrdinalList.add(i);
}
}
projectExprOrdinals = Ints.toArray(projectExprOrdinalList);
}
final RelType relType = relTypes[levelTypeOrdinals[level]];
// Can we do the condition this level?
int conditionExprOrdinal = -1;
if ((conditionRef != null) && !doneCondition) {
conditionExprOrdinal = conditionRef.getIndex();
if ((exprLevels[conditionExprOrdinal] > level) || !relType.supportsCondition()) {
// stand down -- we're not ready to do the condition yet
conditionExprOrdinal = -1;
} else {
doneCondition = true;
}
}
RexProgram program1 = createProgramForLevel(level, levelCount, rel.getRowType(), exprs, exprLevels, inputExprOrdinals, projectExprOrdinals, conditionExprOrdinal, outputRowType);
rel = relType.makeRel(cluster, traits, relBuilder, rel, program1);
// want these. They cause an explosion in the search space.
if (rel instanceof LogicalCalc && ((LogicalCalc) rel).getProgram().isTrivial()) {
rel = rel.getInput(0);
}
rel = handle(rel);
// The outputs of this level will be the inputs to the next level.
inputExprOrdinals = projectExprOrdinals;
}
Preconditions.checkArgument(doneCondition || (conditionRef == null), "unhandled condition");
return rel;
}
Aggregations