use of org.apache.calcite.plan.RelOptCost in project calcite by apache.
the class Correlate method computeSelfCost.
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner, RelMetadataQuery mq) {
double rowCount = mq.getRowCount(this);
final double rightRowCount = right.estimateRowCount(mq);
final double leftRowCount = left.estimateRowCount(mq);
if (Double.isInfinite(leftRowCount) || Double.isInfinite(rightRowCount)) {
return planner.getCostFactory().makeInfiniteCost();
}
Double restartCount = mq.getRowCount(getLeft());
// RelMetadataQuery.getCumulativeCost(getRight()); does not work for
// RelSubset, so we ask planner to cost-estimate right relation
RelOptCost rightCost = planner.getCost(getRight(), mq);
RelOptCost rescanCost = rightCost.multiplyBy(Math.max(1.0, restartCount - 1));
return planner.getCostFactory().makeCost(rowCount + /* generate results */
leftRowCount, /* scan left results */
0, 0).plus(rescanCost);
}
use of org.apache.calcite.plan.RelOptCost in project calcite by apache.
the class RelSubset method computeBestCost.
// ~ Methods ----------------------------------------------------------------
/**
* Computes the best {@link RelNode} in this subset.
*
* <p>Only necessary when a subset is created in a set that has subsets that
* subsume it. Rationale:</p>
*
* <ol>
* <li>If the are no subsuming subsets, the subset is initially empty.</li>
* <li>After creation, {@code best} and {@code bestCost} are maintained
* incrementally by {@link #propagateCostImprovements0} and
* {@link RelSet#mergeWith(VolcanoPlanner, RelSet)}.</li>
* </ol>
*/
private void computeBestCost(RelOptPlanner planner) {
bestCost = planner.getCostFactory().makeInfiniteCost();
final RelMetadataQuery mq = getCluster().getMetadataQuery();
for (RelNode rel : getRels()) {
final RelOptCost cost = planner.getCost(rel, mq);
if (cost.isLt(bestCost)) {
bestCost = cost;
best = rel;
}
}
}
use of org.apache.calcite.plan.RelOptCost in project hive by apache.
the class HiveAggregateJoinTransposeRule method onMatch.
@Override
public void onMatch(RelOptRuleCall call) {
try {
final Aggregate aggregate = call.rel(0);
final Join join = call.rel(1);
final RexBuilder rexBuilder = aggregate.getCluster().getRexBuilder();
final RelBuilder relBuilder = call.builder();
// If any aggregate call has a filter, bail out
for (AggregateCall aggregateCall : aggregate.getAggCallList()) {
if (aggregateCall.getAggregation().unwrap(SqlSplittableAggFunction.class) == null) {
return;
}
if (aggregateCall.filterArg >= 0) {
return;
}
}
// aggregate operator
if (join.getJoinType() != JoinRelType.INNER) {
return;
}
if (!allowFunctions && !aggregate.getAggCallList().isEmpty()) {
return;
}
boolean groupingUnique = isGroupingUnique(join, aggregate.getGroupSet());
if (!groupingUnique && !costBased) {
// there is no need to check further - the transformation may not happen
return;
}
// Do the columns used by the join appear in the output of the aggregate?
final ImmutableBitSet aggregateColumns = aggregate.getGroupSet();
final RelMetadataQuery mq = call.getMetadataQuery();
final ImmutableBitSet keyColumns = keyColumns(aggregateColumns, mq.getPulledUpPredicates(join).pulledUpPredicates);
final ImmutableBitSet joinColumns = RelOptUtil.InputFinder.bits(join.getCondition());
final boolean allColumnsInAggregate = keyColumns.contains(joinColumns);
final ImmutableBitSet belowAggregateColumns = aggregateColumns.union(joinColumns);
// Split join condition
final List<Integer> leftKeys = Lists.newArrayList();
final List<Integer> rightKeys = Lists.newArrayList();
final List<Boolean> filterNulls = Lists.newArrayList();
RexNode nonEquiConj = RelOptUtil.splitJoinCondition(join.getLeft(), join.getRight(), join.getCondition(), leftKeys, rightKeys, filterNulls);
// If it contains non-equi join conditions, we bail out
if (!nonEquiConj.isAlwaysTrue()) {
return;
}
// Push each aggregate function down to each side that contains all of its
// arguments. Note that COUNT(*), because it has no arguments, can go to
// both sides.
final Map<Integer, Integer> map = new HashMap<>();
final List<Side> sides = new ArrayList<>();
int uniqueCount = 0;
int offset = 0;
int belowOffset = 0;
for (int s = 0; s < 2; s++) {
final Side side = new Side();
final RelNode joinInput = join.getInput(s);
int fieldCount = joinInput.getRowType().getFieldCount();
final ImmutableBitSet fieldSet = ImmutableBitSet.range(offset, offset + fieldCount);
final ImmutableBitSet belowAggregateKeyNotShifted = belowAggregateColumns.intersect(fieldSet);
for (Ord<Integer> c : Ord.zip(belowAggregateKeyNotShifted)) {
map.put(c.e, belowOffset + c.i);
}
final ImmutableBitSet belowAggregateKey = belowAggregateKeyNotShifted.shift(-offset);
final boolean unique;
if (!allowFunctions) {
assert aggregate.getAggCallList().isEmpty();
// If there are no functions, it doesn't matter as much whether we
// aggregate the inputs before the join, because there will not be
// any functions experiencing a cartesian product effect.
//
// But finding out whether the input is already unique requires a call
// to areColumnsUnique that currently (until [CALCITE-1048] "Make
// metadata more robust" is fixed) places a heavy load on
// the metadata system.
//
// So we choose to imagine the the input is already unique, which is
// untrue but harmless.
//
unique = true;
} else {
final Boolean unique0 = mq.areColumnsUnique(joinInput, belowAggregateKey, true);
unique = unique0 != null && unique0;
}
if (unique) {
++uniqueCount;
relBuilder.push(joinInput);
relBuilder.project(belowAggregateKey.asList().stream().map(relBuilder::field).collect(Collectors.toList()));
side.newInput = relBuilder.build();
} else {
List<AggregateCall> belowAggCalls = new ArrayList<>();
final SqlSplittableAggFunction.Registry<AggregateCall> belowAggCallRegistry = registry(belowAggCalls);
final Mappings.TargetMapping mapping = s == 0 ? Mappings.createIdentity(fieldCount) : Mappings.createShiftMapping(fieldCount + offset, 0, offset, fieldCount);
for (Ord<AggregateCall> aggCall : Ord.zip(aggregate.getAggCallList())) {
final SqlAggFunction aggregation = aggCall.e.getAggregation();
final SqlSplittableAggFunction splitter = Preconditions.checkNotNull(aggregation.unwrap(SqlSplittableAggFunction.class));
final AggregateCall call1;
if (fieldSet.contains(ImmutableBitSet.of(aggCall.e.getArgList()))) {
call1 = splitter.split(aggCall.e, mapping);
} else {
call1 = splitter.other(rexBuilder.getTypeFactory(), aggCall.e);
}
if (call1 != null) {
side.split.put(aggCall.i, belowAggregateKey.cardinality() + belowAggCallRegistry.register(call1));
}
}
side.newInput = relBuilder.push(joinInput).aggregate(relBuilder.groupKey(belowAggregateKey, null), belowAggCalls).build();
}
offset += fieldCount;
belowOffset += side.newInput.getRowType().getFieldCount();
sides.add(side);
}
if (uniqueCount == 2) {
// invocation of this rule; if we continue we might loop forever.
return;
}
// Update condition
final Mapping mapping = (Mapping) Mappings.target(map::get, join.getRowType().getFieldCount(), belowOffset);
final RexNode newCondition = RexUtil.apply(mapping, join.getCondition());
// Create new join
relBuilder.push(sides.get(0).newInput).push(sides.get(1).newInput).join(join.getJoinType(), newCondition);
// Aggregate above to sum up the sub-totals
final List<AggregateCall> newAggCalls = new ArrayList<>();
final int groupIndicatorCount = aggregate.getGroupCount() + aggregate.getIndicatorCount();
final int newLeftWidth = sides.get(0).newInput.getRowType().getFieldCount();
final List<RexNode> projects = new ArrayList<>(rexBuilder.identityProjects(relBuilder.peek().getRowType()));
for (Ord<AggregateCall> aggCall : Ord.zip(aggregate.getAggCallList())) {
final SqlAggFunction aggregation = aggCall.e.getAggregation();
final SqlSplittableAggFunction splitter = Preconditions.checkNotNull(aggregation.unwrap(SqlSplittableAggFunction.class));
final Integer leftSubTotal = sides.get(0).split.get(aggCall.i);
final Integer rightSubTotal = sides.get(1).split.get(aggCall.i);
newAggCalls.add(splitter.topSplit(rexBuilder, registry(projects), groupIndicatorCount, relBuilder.peek().getRowType(), aggCall.e, leftSubTotal == null ? -1 : leftSubTotal, rightSubTotal == null ? -1 : rightSubTotal + newLeftWidth));
}
relBuilder.project(projects);
boolean aggConvertedToProjects = false;
if (allColumnsInAggregate) {
// let's see if we can convert aggregate into projects
List<RexNode> projects2 = new ArrayList<>();
for (int key : Mappings.apply(mapping, aggregate.getGroupSet())) {
projects2.add(relBuilder.field(key));
}
for (AggregateCall newAggCall : newAggCalls) {
final SqlSplittableAggFunction splitter = newAggCall.getAggregation().unwrap(SqlSplittableAggFunction.class);
if (splitter != null) {
final RelDataType rowType = relBuilder.peek().getRowType();
projects2.add(splitter.singleton(rexBuilder, rowType, newAggCall));
}
}
if (projects2.size() == aggregate.getGroupSet().cardinality() + newAggCalls.size()) {
// We successfully converted agg calls into projects.
relBuilder.project(projects2);
aggConvertedToProjects = true;
}
}
if (!aggConvertedToProjects) {
relBuilder.aggregate(relBuilder.groupKey(Mappings.apply(mapping, aggregate.getGroupSet()), Mappings.apply2(mapping, aggregate.getGroupSets())), newAggCalls);
}
RelNode r = relBuilder.build();
boolean transform = false;
if (uniqueBased && aggConvertedToProjects) {
transform = groupingUnique;
}
if (!transform && costBased) {
RelOptCost afterCost = mq.getCumulativeCost(r);
RelOptCost beforeCost = mq.getCumulativeCost(aggregate);
transform = afterCost.isLt(beforeCost);
}
if (transform) {
call.transformTo(r);
}
} catch (Exception e) {
if (noColsMissingStats.get() > 0) {
LOG.warn("Missing column stats (see previous messages), skipping aggregate-join transpose in CBO");
noColsMissingStats.set(0);
} else {
throw e;
}
}
}
use of org.apache.calcite.plan.RelOptCost in project hive by apache.
the class HiveCostModel method getJoinCost.
public RelOptCost getJoinCost(HiveJoin join) {
// Select algorithm with min cost
JoinAlgorithm joinAlgorithm = null;
RelOptCost minJoinCost = null;
if (LOG.isTraceEnabled()) {
LOG.trace("Join algorithm selection for:\n" + RelOptUtil.toString(join));
}
for (JoinAlgorithm possibleAlgorithm : this.joinAlgorithms) {
if (!possibleAlgorithm.isExecutable(join)) {
continue;
}
RelOptCost joinCost = possibleAlgorithm.getCost(join);
LOG.trace("{} cost: {}", possibleAlgorithm, joinCost);
if (minJoinCost == null || joinCost.isLt(minJoinCost)) {
joinAlgorithm = possibleAlgorithm;
minJoinCost = joinCost;
}
}
LOG.trace("{} selected", joinAlgorithm);
join.setJoinAlgorithm(joinAlgorithm);
join.setJoinCost(minJoinCost);
return minJoinCost;
}
use of org.apache.calcite.plan.RelOptCost in project hive by apache.
the class HiveVolcanoPlanner method getCost.
/**
* The method extends the logic of the super method to decrease
* the cost of the plan if it contains materialized views
* (heuristic).
*/
public RelOptCost getCost(RelNode rel, RelMetadataQuery mq) {
assert rel != null : "pre-condition: rel != null";
if (rel instanceof RelSubset) {
// Get cost of the subset, best rel may have been chosen or not
RelSubset subset = (RelSubset) rel;
if (subset.getBest() != null) {
return getCost(subset.getBest(), mq);
}
return costFactory.makeInfiniteCost();
}
if (rel.getTraitSet().getTrait(ConventionTraitDef.INSTANCE) == Convention.NONE) {
return costFactory.makeInfiniteCost();
}
// We get the cost of the operator
RelOptCost cost = mq.getNonCumulativeCost(rel);
if (!costFactory.makeZeroCost().isLt(cost)) {
// cost must be positive, so nudge it
cost = costFactory.makeTinyCost();
}
// If this operator has a materialized view below,
// we make its cost tiny and adjust the cost of its
// inputs
boolean usesMaterializedViews = false;
Multimap<Class<? extends RelNode>, RelNode> nodeTypes = mq.getNodeTypes(rel);
for (RelNode scan : nodeTypes.get(TableScan.class)) {
if (scan.getTable() instanceof RelOptHiveTable) {
RelOptHiveTable relOptHiveTable = (RelOptHiveTable) scan.getTable();
if (relOptHiveTable.getHiveTableMD().isMaterializedView()) {
usesMaterializedViews = true;
break;
}
}
}
if (isHeuristic && usesMaterializedViews) {
// If a child of this expression uses a materialized view,
// then we decrease its cost by a certain factor. This is
// useful for e.g. partial rewritings, where a part of plan
// does not use the materialization, but we still want to
// decrease its cost so it is chosen instead of the original
// plan
cost = cost.multiplyBy(RelOptUtil.EPSILON);
if (!costFactory.makeZeroCost().isLt(cost)) {
// cost must be positive, so nudge it
cost = costFactory.makeTinyCost();
}
for (RelNode input : rel.getInputs()) {
cost = cost.plus(getCost(input, mq));
}
} else {
// No materialized view or not heuristic approach, normal costing
for (RelNode input : rel.getInputs()) {
cost = cost.plus(getCost(input, mq));
}
}
return cost;
}
Aggregations