use of org.apache.calcite.rex.RexCall in project calcite by apache.
the class RelOptUtil method splitJoinCondition.
private static void splitJoinCondition(List<RelDataTypeField> sysFieldList, List<RelNode> inputs, RexNode condition, List<List<RexNode>> joinKeys, List<Integer> filterNulls, List<SqlOperator> rangeOp, List<RexNode> nonEquiList) {
final int sysFieldCount = sysFieldList.size();
final RelOptCluster cluster = inputs.get(0).getCluster();
final RexBuilder rexBuilder = cluster.getRexBuilder();
final RelDataTypeFactory typeFactory = cluster.getTypeFactory();
final ImmutableBitSet[] inputsRange = new ImmutableBitSet[inputs.size()];
int totalFieldCount = 0;
for (int i = 0; i < inputs.size(); i++) {
final int firstField = totalFieldCount + sysFieldCount;
totalFieldCount = firstField + inputs.get(i).getRowType().getFieldCount();
inputsRange[i] = ImmutableBitSet.range(firstField, totalFieldCount);
}
// adjustment array
int[] adjustments = new int[totalFieldCount];
for (int i = 0; i < inputs.size(); i++) {
final int adjustment = inputsRange[i].nextSetBit(0);
for (int j = adjustment; j < inputsRange[i].length(); j++) {
adjustments[j] = -adjustment;
}
}
if (condition instanceof RexCall) {
RexCall call = (RexCall) condition;
if (call.getKind() == SqlKind.AND) {
for (RexNode operand : call.getOperands()) {
splitJoinCondition(sysFieldList, inputs, operand, joinKeys, filterNulls, rangeOp, nonEquiList);
}
return;
}
RexNode leftKey = null;
RexNode rightKey = null;
int leftInput = 0;
int rightInput = 0;
List<RelDataTypeField> leftFields = null;
List<RelDataTypeField> rightFields = null;
boolean reverse = false;
call = collapseExpandedIsNotDistinctFromExpr(call, rexBuilder);
SqlKind kind = call.getKind();
// Only consider range operators if we haven't already seen one
if ((kind == SqlKind.EQUALS) || (filterNulls != null && kind == SqlKind.IS_NOT_DISTINCT_FROM) || (rangeOp != null && rangeOp.isEmpty() && (kind == SqlKind.GREATER_THAN || kind == SqlKind.GREATER_THAN_OR_EQUAL || kind == SqlKind.LESS_THAN || kind == SqlKind.LESS_THAN_OR_EQUAL))) {
final List<RexNode> operands = call.getOperands();
RexNode op0 = operands.get(0);
RexNode op1 = operands.get(1);
final ImmutableBitSet projRefs0 = InputFinder.bits(op0);
final ImmutableBitSet projRefs1 = InputFinder.bits(op1);
boolean foundBothInputs = false;
for (int i = 0; i < inputs.size() && !foundBothInputs; i++) {
if (projRefs0.intersects(inputsRange[i]) && projRefs0.union(inputsRange[i]).equals(inputsRange[i])) {
if (leftKey == null) {
leftKey = op0;
leftInput = i;
leftFields = inputs.get(leftInput).getRowType().getFieldList();
} else {
rightKey = op0;
rightInput = i;
rightFields = inputs.get(rightInput).getRowType().getFieldList();
reverse = true;
foundBothInputs = true;
}
} else if (projRefs1.intersects(inputsRange[i]) && projRefs1.union(inputsRange[i]).equals(inputsRange[i])) {
if (leftKey == null) {
leftKey = op1;
leftInput = i;
leftFields = inputs.get(leftInput).getRowType().getFieldList();
} else {
rightKey = op1;
rightInput = i;
rightFields = inputs.get(rightInput).getRowType().getFieldList();
foundBothInputs = true;
}
}
}
if ((leftKey != null) && (rightKey != null)) {
// replace right Key input ref
rightKey = rightKey.accept(new RelOptUtil.RexInputConverter(rexBuilder, rightFields, rightFields, adjustments));
// left key only needs to be adjusted if there are system
// fields, but do it for uniformity
leftKey = leftKey.accept(new RelOptUtil.RexInputConverter(rexBuilder, leftFields, leftFields, adjustments));
RelDataType leftKeyType = leftKey.getType();
RelDataType rightKeyType = rightKey.getType();
if (leftKeyType != rightKeyType) {
// perform casting
RelDataType targetKeyType = typeFactory.leastRestrictive(ImmutableList.of(leftKeyType, rightKeyType));
if (targetKeyType == null) {
throw new AssertionError("Cannot find common type for join keys " + leftKey + " (type " + leftKeyType + ") and " + rightKey + " (type " + rightKeyType + ")");
}
if (leftKeyType != targetKeyType) {
leftKey = rexBuilder.makeCast(targetKeyType, leftKey);
}
if (rightKeyType != targetKeyType) {
rightKey = rexBuilder.makeCast(targetKeyType, rightKey);
}
}
}
}
if ((rangeOp == null) && ((leftKey == null) || (rightKey == null))) {
// no equality join keys found yet:
// try transforming the condition to
// equality "join" conditions, e.g.
// f(LHS) > 0 ===> ( f(LHS) > 0 ) = TRUE,
// and make the RHS produce TRUE, but only if we're strictly
// looking for equi-joins
final ImmutableBitSet projRefs = InputFinder.bits(condition);
leftKey = null;
rightKey = null;
boolean foundInput = false;
for (int i = 0; i < inputs.size() && !foundInput; i++) {
if (inputsRange[i].contains(projRefs)) {
leftInput = i;
leftFields = inputs.get(leftInput).getRowType().getFieldList();
leftKey = condition.accept(new RelOptUtil.RexInputConverter(rexBuilder, leftFields, leftFields, adjustments));
rightKey = rexBuilder.makeLiteral(true);
// effectively performing an equality comparison
kind = SqlKind.EQUALS;
foundInput = true;
}
}
}
if ((leftKey != null) && (rightKey != null)) {
// found suitable join keys
// add them to key list, ensuring that if there is a
// non-equi join predicate, it appears at the end of the
// key list; also mark the null filtering property
addJoinKey(joinKeys.get(leftInput), leftKey, (rangeOp != null) && !rangeOp.isEmpty());
addJoinKey(joinKeys.get(rightInput), rightKey, (rangeOp != null) && !rangeOp.isEmpty());
if (filterNulls != null && kind == SqlKind.EQUALS) {
// nulls are considered not matching for equality comparison
// add the position of the most recently inserted key
filterNulls.add(joinKeys.get(leftInput).size() - 1);
}
if (rangeOp != null && kind != SqlKind.EQUALS && kind != SqlKind.IS_DISTINCT_FROM) {
if (reverse) {
kind = kind.reverse();
}
rangeOp.add(op(kind, call.getOperator()));
}
return;
}
// else fall through and add this condition as nonEqui condition
}
// The operator is not of RexCall type
// So we fail. Fall through.
// Add this condition to the list of non-equi-join conditions.
nonEquiList.add(condition);
}
use of org.apache.calcite.rex.RexCall in project calcite by apache.
the class RelOptUtil method pushDownEqualJoinConditions.
/**
* Pushes down parts of a join condition.
*
* <p>For example, given
* "emp JOIN dept ON emp.deptno + 1 = dept.deptno", adds a project above
* "emp" that computes the expression
* "emp.deptno + 1". The resulting join condition is a simple combination
* of AND, equals, and input fields.
*/
private static RexNode pushDownEqualJoinConditions(RexNode node, int leftCount, int rightCount, List<RexNode> extraLeftExprs, List<RexNode> extraRightExprs) {
switch(node.getKind()) {
case AND:
case EQUALS:
final RexCall call = (RexCall) node;
final List<RexNode> list = new ArrayList<>();
List<RexNode> operands = Lists.newArrayList(call.getOperands());
for (int i = 0; i < operands.size(); i++) {
RexNode operand = operands.get(i);
final int left2 = leftCount + extraLeftExprs.size();
final int right2 = rightCount + extraRightExprs.size();
final RexNode e = pushDownEqualJoinConditions(operand, leftCount, rightCount, extraLeftExprs, extraRightExprs);
final List<RexNode> remainingOperands = Util.skip(operands, i + 1);
final int left3 = leftCount + extraLeftExprs.size();
fix(remainingOperands, left2, left3);
fix(list, left2, left3);
list.add(e);
}
if (!list.equals(call.getOperands())) {
return call.clone(call.getType(), list);
}
return call;
case OR:
case INPUT_REF:
case LITERAL:
return node;
default:
final ImmutableBitSet bits = RelOptUtil.InputFinder.bits(node);
final int mid = leftCount + extraLeftExprs.size();
switch(Side.of(bits, mid)) {
case LEFT:
fix(extraRightExprs, mid, mid + 1);
extraLeftExprs.add(node);
return new RexInputRef(mid, node.getType());
case RIGHT:
final int index2 = mid + rightCount + extraRightExprs.size();
extraRightExprs.add(node);
return new RexInputRef(index2, node.getType());
case BOTH:
case EMPTY:
default:
return node;
}
}
}
use of org.apache.calcite.rex.RexCall in project calcite by apache.
the class RelOptUtil method splitCorrelatedFilterCondition.
private static void splitCorrelatedFilterCondition(LogicalFilter filter, RexNode condition, List<RexInputRef> joinKeys, List<RexNode> correlatedJoinKeys, List<RexNode> nonEquiList) {
if (condition instanceof RexCall) {
RexCall call = (RexCall) condition;
if (call.getOperator().getKind() == SqlKind.AND) {
for (RexNode operand : call.getOperands()) {
splitCorrelatedFilterCondition(filter, operand, joinKeys, correlatedJoinKeys, nonEquiList);
}
return;
}
if (call.getOperator().getKind() == SqlKind.EQUALS) {
final List<RexNode> operands = call.getOperands();
RexNode op0 = operands.get(0);
RexNode op1 = operands.get(1);
if (!(RexUtil.containsInputRef(op0)) && (op1 instanceof RexInputRef)) {
correlatedJoinKeys.add(op0);
joinKeys.add((RexInputRef) op1);
return;
} else if ((op0 instanceof RexInputRef) && !(RexUtil.containsInputRef(op1))) {
joinKeys.add((RexInputRef) op0);
correlatedJoinKeys.add(op1);
return;
}
}
}
// The operator is not of RexCall type
// So we fail. Fall through.
// Add this condition to the list of non-equi-join conditions.
nonEquiList.add(condition);
}
use of org.apache.calcite.rex.RexCall in project calcite by apache.
the class RelOptUtil method decomposeConjunction.
/**
* Decomposes a predicate into a list of expressions that are AND'ed
* together, and a list of expressions that are preceded by NOT.
*
* <p>For example, {@code a AND NOT b AND NOT (c and d) AND TRUE AND NOT
* FALSE} returns {@code rexList = [a], notList = [b, c AND d]}.</p>
*
* <p>TRUE and NOT FALSE expressions are ignored. FALSE and NOT TRUE
* expressions are placed on {@code rexList} and {@code notList} as other
* expressions.</p>
*
* <p>For example, {@code a AND TRUE AND NOT TRUE} returns
* {@code rexList = [a], notList = [TRUE]}.</p>
*
* @param rexPredicate predicate to be analyzed
* @param rexList list of decomposed RexNodes (except those with NOT)
* @param notList list of decomposed RexNodes that were prefixed NOT
*/
public static void decomposeConjunction(RexNode rexPredicate, List<RexNode> rexList, List<RexNode> notList) {
if (rexPredicate == null || rexPredicate.isAlwaysTrue()) {
return;
}
switch(rexPredicate.getKind()) {
case AND:
for (RexNode operand : ((RexCall) rexPredicate).getOperands()) {
decomposeConjunction(operand, rexList, notList);
}
break;
case NOT:
final RexNode e = ((RexCall) rexPredicate).getOperands().get(0);
if (e.isAlwaysFalse()) {
return;
}
switch(e.getKind()) {
case OR:
final List<RexNode> ors = new ArrayList<>();
decomposeDisjunction(e, ors);
for (RexNode or : ors) {
switch(or.getKind()) {
case NOT:
rexList.add(((RexCall) or).operands.get(0));
break;
default:
notList.add(or);
}
}
break;
default:
notList.add(e);
}
break;
case LITERAL:
if (!RexLiteral.isNullLiteral(rexPredicate) && RexLiteral.booleanValue(rexPredicate)) {
// ignore TRUE
return;
}
// fall through
default:
rexList.add(rexPredicate);
break;
}
}
use of org.apache.calcite.rex.RexCall in project calcite by apache.
the class RelOptUtil method splitCorrelatedFilterCondition.
private static void splitCorrelatedFilterCondition(LogicalFilter filter, RexNode condition, List<RexNode> joinKeys, List<RexNode> correlatedJoinKeys, List<RexNode> nonEquiList, boolean extractCorrelatedFieldAccess) {
if (condition instanceof RexCall) {
RexCall call = (RexCall) condition;
if (call.getOperator().getKind() == SqlKind.AND) {
for (RexNode operand : call.getOperands()) {
splitCorrelatedFilterCondition(filter, operand, joinKeys, correlatedJoinKeys, nonEquiList, extractCorrelatedFieldAccess);
}
return;
}
if (call.getOperator().getKind() == SqlKind.EQUALS) {
final List<RexNode> operands = call.getOperands();
RexNode op0 = operands.get(0);
RexNode op1 = operands.get(1);
if (extractCorrelatedFieldAccess) {
if (!RexUtil.containsFieldAccess(op0) && (op1 instanceof RexFieldAccess)) {
joinKeys.add(op0);
correlatedJoinKeys.add(op1);
return;
} else if ((op0 instanceof RexFieldAccess) && !RexUtil.containsFieldAccess(op1)) {
correlatedJoinKeys.add(op0);
joinKeys.add(op1);
return;
}
} else {
if (!(RexUtil.containsInputRef(op0)) && (op1 instanceof RexInputRef)) {
correlatedJoinKeys.add(op0);
joinKeys.add(op1);
return;
} else if ((op0 instanceof RexInputRef) && !(RexUtil.containsInputRef(op1))) {
joinKeys.add(op0);
correlatedJoinKeys.add(op1);
return;
}
}
}
}
// The operator is not of RexCall type
// So we fail. Fall through.
// Add this condition to the list of non-equi-join conditions.
nonEquiList.add(condition);
}
Aggregations