use of org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction in project triplea by triplea-game.
the class RouteTest method testCurve.
@Test
public void testCurve() {
final double[] testYValues = new double[] { 20, 40, 90 };
final PolynomialSplineFunction testFunction = new SplineInterpolator().interpolate(dummyIndex, testYValues);
final double[] coords = spyRouteDrawer.getCoords(testFunction, dummyIndex);
final double stepSize = testFunction.getKnots()[testFunction.getKnots().length - 1] / coords.length;
assertEquals(testYValues[0] * stepSize, coords[(int) Math.round(dummyIndex[0])], 1);
assertEquals(testYValues[1] * stepSize, coords[(int) Math.round(dummyIndex[1])], 1);
assertEquals(testYValues[2] * stepSize, coords[(int) Math.round(dummyIndex[2])], 1);
// TODO change the calculation so that delta = 0;
}
use of org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction in project GDSC-SMLM by aherbert.
the class TraceMolecules method interpolateZeroCrossingPoints.
@SuppressWarnings("unused")
private void interpolateZeroCrossingPoints() {
final double[] x = new double[zeroCrossingPoints.size()];
final double[] y = new double[zeroCrossingPoints.size()];
for (int i = 0; i < x.length; i++) {
final double[] point = zeroCrossingPoints.get(i);
x[i] = point[0];
y[i] = point[1];
}
final PolynomialSplineFunction fx = new SplineInterpolator().interpolate(x, y);
double minX = x[0];
final double maxX = x[x.length - 1];
final double xinc = (maxX - minX) / 50;
for (minX = minX + xinc; minX < maxX; minX += xinc) {
zeroCrossingPoints.add(new double[] { minX, fx.value(minX) });
}
sortPoints();
}
use of org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction in project GDSC-SMLM by aherbert.
the class SpotAnalysis method interpolate.
private double[] interpolate(double[] xValues, double[] yValues) {
// Smooth the values not in the current on-frames
double[] newX = Arrays.copyOf(xValues, xValues.length);
double[] newY = Arrays.copyOf(yValues, yValues.length);
for (final Spot s : onFrames) {
newX[s.frame - 1] = -1;
}
int count = 0;
for (int i = 0; i < newX.length; i++) {
if (newX[i] == -1) {
continue;
}
newX[count] = newX[i];
newY[count] = newY[i];
count++;
}
newX = Arrays.copyOf(newX, count);
newY = Arrays.copyOf(newY, count);
double smoothing = 0.25;
try {
smoothing = Double.parseDouble(smoothingTextField.getText());
if (smoothing < 0.01 || smoothing > 0.9) {
smoothing = 0.25;
}
} catch (final NumberFormatException ex) {
// Ignore
}
final LoessInterpolator loess = new LoessInterpolator(smoothing, 1);
final PolynomialSplineFunction f = loess.interpolate(newX, newY);
// Interpolate
final double[] plotSmooth = new double[xValues.length];
for (int i = 0; i < xValues.length; i++) {
// Cannot interpolate outside the bounds of the input data
if (xValues[i] < newX[0]) {
plotSmooth[i] = newY[0];
} else if (xValues[i] > newX[newX.length - 1]) {
plotSmooth[i] = newY[newX.length - 1];
} else {
plotSmooth[i] = f.value(xValues[i]);
}
}
return plotSmooth;
}
use of org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction in project GDSC-SMLM by aherbert.
the class BenchmarkFilterAnalysis method depthAnalysis.
/**
* Depth analysis.
*
* @param allAssignments The assignments generated from running the filter (or null)
* @param filter the filter
* @return the assignments
*/
@Nullable
private ArrayList<FractionalAssignment[]> depthAnalysis(ArrayList<FractionalAssignment[]> allAssignments, DirectFilter filter) {
if (!settings.depthRecallAnalysis || simulationParameters.fixedDepth) {
return null;
}
// Build a histogram of the number of spots at different depths
final double[] depths = fitResultData.depthStats.getValues();
double[] limits = MathUtils.limits(depths);
final int bins = HistogramPlot.getBinsSqrtRule(depths.length);
final double[][] h1 = HistogramPlot.calcHistogram(depths, limits[0], limits[1], bins);
final double[][] h2 = HistogramPlot.calcHistogram(fitResultData.depthFitStats.getValues(), limits[0], limits[1], bins);
// manually to get the results that pass.
if (allAssignments == null) {
allAssignments = getAssignments(filter);
}
double[] depths2 = new double[results.size()];
int count = 0;
for (final FractionalAssignment[] assignments : allAssignments) {
if (assignments == null) {
continue;
}
for (int i = 0; i < assignments.length; i++) {
final CustomFractionalAssignment c = (CustomFractionalAssignment) assignments[i];
depths2[count++] = c.peak.getZPosition();
}
}
depths2 = Arrays.copyOf(depths2, count);
// Build a histogram using the same limits
final double[][] h3 = HistogramPlot.calcHistogram(depths2, limits[0], limits[1], bins);
// Convert pixel depth to nm
for (int i = 0; i < h1[0].length; i++) {
h1[0][i] *= simulationParameters.pixelPitch;
}
limits[0] *= simulationParameters.pixelPitch;
limits[1] *= simulationParameters.pixelPitch;
// Produce a histogram of the number of spots at each depth
final String title1 = TITLE + " Depth Histogram";
final Plot plot1 = new Plot(title1, "Depth (nm)", "Frequency");
plot1.setLimits(limits[0], limits[1], 0, MathUtils.max(h1[1]));
plot1.setColor(Color.black);
plot1.addPoints(h1[0], h1[1], Plot.BAR);
plot1.addLabel(0, 0, "Black = Spots; Blue = Fitted; Red = Filtered");
plot1.setColor(Color.blue);
plot1.addPoints(h1[0], h2[1], Plot.BAR);
plot1.setColor(Color.red);
plot1.addPoints(h1[0], h3[1], Plot.BAR);
plot1.setColor(Color.magenta);
ImageJUtils.display(title1, plot1, wo);
// Interpolate
final double halfBinWidth = (h1[0][1] - h1[0][0]) * 0.5;
// Remove final value of the histogram as this is at the upper limit of the range (i.e. count
// zero)
h1[0] = Arrays.copyOf(h1[0], h1[0].length - 1);
h1[1] = Arrays.copyOf(h1[1], h1[0].length);
h2[1] = Arrays.copyOf(h2[1], h1[0].length);
h3[1] = Arrays.copyOf(h3[1], h1[0].length);
// TODO : Fix the smoothing since LOESS sometimes does not work.
// Perhaps allow configuration of the number of histogram bins and the smoothing bandwidth.
// Use minimum of 3 points for smoothing
// Ensure we use at least x% of data
final double bandwidth = Math.max(3.0 / h1[0].length, 0.15);
final LoessInterpolator loess = new LoessInterpolator(bandwidth, 1);
final PolynomialSplineFunction spline1 = loess.interpolate(h1[0], h1[1]);
final PolynomialSplineFunction spline2 = loess.interpolate(h1[0], h2[1]);
final PolynomialSplineFunction spline3 = loess.interpolate(h1[0], h3[1]);
// Use a second interpolator in case the LOESS fails
final LinearInterpolator lin = new LinearInterpolator();
final PolynomialSplineFunction spline1b = lin.interpolate(h1[0], h1[1]);
final PolynomialSplineFunction spline2b = lin.interpolate(h1[0], h2[1]);
final PolynomialSplineFunction spline3b = lin.interpolate(h1[0], h3[1]);
// Increase the number of points to show a smooth curve
final double[] points = new double[bins * 5];
limits = MathUtils.limits(h1[0]);
final double interval = (limits[1] - limits[0]) / (points.length - 1);
final double[] v = new double[points.length];
final double[] v2 = new double[points.length];
final double[] v3 = new double[points.length];
for (int i = 0; i < points.length - 1; i++) {
points[i] = limits[0] + i * interval;
v[i] = getSplineValue(spline1, spline1b, points[i]);
v2[i] = getSplineValue(spline2, spline2b, points[i]);
v3[i] = getSplineValue(spline3, spline3b, points[i]);
points[i] += halfBinWidth;
}
// Final point on the limit of the spline range
final int ii = points.length - 1;
v[ii] = getSplineValue(spline1, spline1b, limits[1]);
v2[ii] = getSplineValue(spline2, spline2b, limits[1]);
v3[ii] = getSplineValue(spline3, spline3b, limits[1]);
points[ii] = limits[1] + halfBinWidth;
// Calculate recall
for (int i = 0; i < v.length; i++) {
v2[i] = v2[i] / v[i];
v3[i] = v3[i] / v[i];
}
final double halfSummaryDepth = settings.summaryDepth * 0.5;
final String title2 = TITLE + " Depth Histogram (normalised)";
final Plot plot2 = new Plot(title2, "Depth (nm)", "Recall");
plot2.setLimits(limits[0] + halfBinWidth, limits[1] + halfBinWidth, 0, MathUtils.min(1, MathUtils.max(v2)));
plot2.setColor(Color.black);
plot2.addLabel(0, 0, "Blue = Fitted; Red = Filtered");
plot2.setColor(Color.blue);
plot2.addPoints(points, v2, Plot.LINE);
plot2.setColor(Color.red);
plot2.addPoints(points, v3, Plot.LINE);
plot2.setColor(Color.magenta);
if (-halfSummaryDepth - halfBinWidth >= limits[0]) {
plot2.drawLine(-halfSummaryDepth, 0, -halfSummaryDepth, getSplineValue(spline3, spline3b, -halfSummaryDepth - halfBinWidth) / getSplineValue(spline1, spline1b, -halfSummaryDepth - halfBinWidth));
}
if (halfSummaryDepth - halfBinWidth <= limits[1]) {
plot2.drawLine(halfSummaryDepth, 0, halfSummaryDepth, getSplineValue(spline3, spline3b, halfSummaryDepth - halfBinWidth) / getSplineValue(spline1, spline1b, halfSummaryDepth - halfBinWidth));
}
ImageJUtils.display(title2, plot2, wo);
return allAssignments;
}
use of org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction in project GDSC-SMLM by aherbert.
the class DriftCalculator method interpolate.
private void interpolate(double[] dx, double[] dy, double[] originalDriftTimePoints) {
// Interpolator can only create missing values within the range provided by the input values.
// The two ends have to be extrapolated.
// TODO: Perform extrapolation. Currently the end values are used.
// Find end points
int startT = 0;
while (originalDriftTimePoints[startT] == 0) {
startT++;
}
int endT = originalDriftTimePoints.length - 1;
while (originalDriftTimePoints[endT] == 0) {
endT--;
}
// Extrapolate using a constant value
for (int t = startT; t-- > 0; ) {
dx[t] = dx[startT];
dy[t] = dy[startT];
}
for (int t = endT; ++t < dx.length; ) {
dx[t] = dx[endT];
dy[t] = dy[endT];
}
final double[][] values = extractValues(originalDriftTimePoints, startT, endT, dx, dy);
PolynomialSplineFunction fx;
PolynomialSplineFunction fy;
if (values[0].length < 3) {
fx = new LinearInterpolator().interpolate(values[0], values[1]);
fy = new LinearInterpolator().interpolate(values[0], values[2]);
} else {
fx = new SplineInterpolator().interpolate(values[0], values[1]);
fy = new SplineInterpolator().interpolate(values[0], values[2]);
}
for (int t = startT; t <= endT; t++) {
if (originalDriftTimePoints[t] == 0) {
dx[t] = fx.value(t);
dy[t] = fy.value(t);
}
}
this.interpolationStart = startT;
this.interpolationEnd = endT;
}
Aggregations