use of org.apache.commons.math3.distribution.AbstractIntegerDistribution in project druid by druid-io.
the class BenchmarkColumnValueGenerator method generateSingleRowValue.
private Object generateSingleRowValue() {
Object ret = null;
ValueType type = schema.getType();
if (distribution instanceof AbstractIntegerDistribution) {
ret = ((AbstractIntegerDistribution) distribution).sample();
} else if (distribution instanceof AbstractRealDistribution) {
ret = ((AbstractRealDistribution) distribution).sample();
} else if (distribution instanceof EnumeratedDistribution) {
ret = ((EnumeratedDistribution) distribution).sample();
}
ret = convertType(ret, type);
return ret;
}
use of org.apache.commons.math3.distribution.AbstractIntegerDistribution in project gatk by broadinstitute.
the class FisherExactTest method twoSidedPValue.
/**
* Computes the 2-sided pvalue of the Fisher's exact test on a normalized table that ensures that the sum of
* all four entries is less than 2 * 200.
*/
public static double twoSidedPValue(final int[][] normalizedTable) {
Utils.nonNull(normalizedTable);
Utils.validateArg(normalizedTable.length == 2, () -> "input must be 2x2 " + Arrays.deepToString(normalizedTable));
Utils.validateArg(normalizedTable[0] != null && normalizedTable[0].length == 2, () -> "input must be 2x2 " + Arrays.deepToString(normalizedTable));
Utils.validateArg(normalizedTable[1] != null && normalizedTable[1].length == 2, () -> "input must be 2x2 " + Arrays.deepToString(normalizedTable));
//Note: this implementation follows the one in R base package
final int[][] x = normalizedTable;
final int m = x[0][0] + x[0][1];
final int n = x[1][0] + x[1][1];
final int k = x[0][0] + x[1][0];
final int lo = Math.max(0, k - n);
final int hi = Math.min(k, m);
final IndexRange support = new IndexRange(lo, hi + 1);
if (support.size() <= 1) {
//special case, support has only one value
return 1.0;
}
final AbstractIntegerDistribution dist = new HypergeometricDistribution(null, m + n, m, k);
final double[] logds = support.mapToDouble(dist::logProbability);
final double threshold = logds[x[0][0] - lo] * REL_ERR;
final double[] log10ds = DoubleStream.of(logds).filter(d -> d <= threshold).map(MathUtils::logToLog10).toArray();
final double pValue = MathUtils.sumLog10(log10ds);
// min is necessary as numerical precision can result in pValue being slightly greater than 1.0
return Math.min(pValue, 1.0);
}
use of org.apache.commons.math3.distribution.AbstractIntegerDistribution in project druid by druid-io.
the class BenchmarkColumnValueGenerator method initDistribution.
private void initDistribution() {
BenchmarkColumnSchema.ValueDistribution distributionType = schema.getDistributionType();
ValueType type = schema.getType();
List<Object> enumeratedValues = schema.getEnumeratedValues();
List<Double> enumeratedProbabilities = schema.getEnumeratedProbabilities();
List<Pair<Object, Double>> probabilities = new ArrayList<>();
switch(distributionType) {
case SEQUENTIAL:
// not random, just cycle through numbers from start to end, or cycle through enumerated values if provided
distribution = new SequentialDistribution(schema.getStartInt(), schema.getEndInt(), schema.getEnumeratedValues());
break;
case UNIFORM:
distribution = new UniformRealDistribution(schema.getStartDouble(), schema.getEndDouble());
break;
case DISCRETE_UNIFORM:
if (enumeratedValues == null) {
enumeratedValues = new ArrayList<>();
for (int i = schema.getStartInt(); i < schema.getEndInt(); i++) {
Object val = convertType(i, type);
enumeratedValues.add(val);
}
}
// give them all equal probability, the library will normalize probabilities to sum to 1.0
for (int i = 0; i < enumeratedValues.size(); i++) {
probabilities.add(new Pair<>(enumeratedValues.get(i), 0.1));
}
distribution = new EnumeratedTreeDistribution<>(probabilities);
break;
case NORMAL:
distribution = new NormalDistribution(schema.getMean(), schema.getStandardDeviation());
break;
case ROUNDED_NORMAL:
NormalDistribution normalDist = new NormalDistribution(schema.getMean(), schema.getStandardDeviation());
distribution = new RealRoundingDistribution(normalDist);
break;
case ZIPF:
int cardinality;
if (enumeratedValues == null) {
Integer startInt = schema.getStartInt();
cardinality = schema.getEndInt() - startInt;
ZipfDistribution zipf = new ZipfDistribution(cardinality, schema.getZipfExponent());
for (int i = 0; i < cardinality; i++) {
probabilities.add(new Pair<>((Object) (i + startInt), zipf.probability(i)));
}
} else {
cardinality = enumeratedValues.size();
ZipfDistribution zipf = new ZipfDistribution(enumeratedValues.size(), schema.getZipfExponent());
for (int i = 0; i < cardinality; i++) {
probabilities.add(new Pair<>(enumeratedValues.get(i), zipf.probability(i)));
}
}
distribution = new EnumeratedTreeDistribution<>(probabilities);
break;
case ENUMERATED:
for (int i = 0; i < enumeratedValues.size(); i++) {
probabilities.add(new Pair<>(enumeratedValues.get(i), enumeratedProbabilities.get(i)));
}
distribution = new EnumeratedTreeDistribution<>(probabilities);
break;
default:
throw new UnsupportedOperationException("Unknown distribution type: " + distributionType);
}
if (distribution instanceof AbstractIntegerDistribution) {
((AbstractIntegerDistribution) distribution).reseedRandomGenerator(seed);
} else if (distribution instanceof AbstractRealDistribution) {
((AbstractRealDistribution) distribution).reseedRandomGenerator(seed);
} else if (distribution instanceof EnumeratedDistribution) {
((EnumeratedDistribution) distribution).reseedRandomGenerator(seed);
}
}
Aggregations