use of org.apache.commons.math3.optim.MaxEval in project aic-praise by aic-sri-international.
the class RegularParameterEstimation method optimizeModel.
/**
* Call the optimizer of Java Commons Math.
*/
public PointValuePair optimizeModel() {
NonLinearConjugateGradientOptimizer optimizer = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, new SimpleValueChecker(1e-13, 1e-13));
final LoglikelihoodToOptimize f = new LoglikelihoodToOptimize(expressionBasedModel, queries);
final GradientLoglikelihoodToOptimize gradientToOptimize = new GradientLoglikelihoodToOptimize(expressionBasedModel, queries);
ObjectiveFunction objectiveFunction = new ObjectiveFunction(f);
MultivariateVectorFunction gradientMultivariateFunction = gradientToOptimize;
ObjectiveFunctionGradient objectiveFunctionGradient = new ObjectiveFunctionGradient(gradientMultivariateFunction);
double[] startPoint = new double[] { 0.5, 0.5 };
final PointValuePair optimum = optimizer.optimize(new MaxEval(10000), objectiveFunction, objectiveFunctionGradient, GoalType.MAXIMIZE, new InitialGuess(startPoint));
return optimum;
}
use of org.apache.commons.math3.optim.MaxEval in project aic-praise by aic-sri-international.
the class RegularSymbolicParameterEstimation method optimize.
/**
* Call the optimizer of Java Commons Math with the objectiveFunction and the gradient given in the arguments.
*/
public PointValuePair optimize(Expression expressionToOptimize, Vector<Expression> gradient) {
NonLinearConjugateGradientOptimizer optimizer = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE, new SimpleValueChecker(1e-13, 1e-13));
final FunctionToOptimize f = new FunctionToOptimize(expressionToOptimize);
final GradientToOptimize gradientToOptimize = new GradientToOptimize(expressionToOptimize, gradient);
ObjectiveFunction objectiveFunction = new ObjectiveFunction(f);
MultivariateVectorFunction gradientMultivariateFunction = gradientToOptimize;
ObjectiveFunctionGradient objectiveFunctionGradient = new ObjectiveFunctionGradient(gradientMultivariateFunction);
double[] startPoint = new double[] { 0.5, 0.5 };
final PointValuePair optimum = optimizer.optimize(new MaxEval(10000), objectiveFunction, objectiveFunctionGradient, GoalType.MAXIMIZE, new InitialGuess(startPoint));
return optimum;
}
use of org.apache.commons.math3.optim.MaxEval in project GDSC-SMLM by aherbert.
the class PCPALMFitting method runBoundedOptimiser.
private PointValuePair runBoundedOptimiser(double[][] gr, double[] initialSolution, double[] lB, double[] uB, SumOfSquaresModelFunction function) {
// Create the functions to optimise
ObjectiveFunction objective = new ObjectiveFunction(new SumOfSquaresMultivariateFunction(function));
ObjectiveFunctionGradient gradient = new ObjectiveFunctionGradient(new SumOfSquaresMultivariateVectorFunction(function));
final boolean debug = false;
// Try a BFGS optimiser since this will produce a deterministic solution and can respect bounds.
PointValuePair optimum = null;
boundedEvaluations = 0;
final MaxEval maxEvaluations = new MaxEval(2000);
MultivariateOptimizer opt = null;
for (int iteration = 0; iteration <= fitRestarts; iteration++) {
try {
opt = new BFGSOptimizer();
final double relativeThreshold = 1e-6;
// Configure maximum step length for each dimension using the bounds
double[] stepLength = new double[lB.length];
for (int i = 0; i < stepLength.length; i++) stepLength[i] = (uB[i] - lB[i]) * 0.3333333;
// The GoalType is always minimise so no need to pass this in
optimum = opt.optimize(maxEvaluations, gradient, objective, new InitialGuess((optimum == null) ? initialSolution : optimum.getPointRef()), new SimpleBounds(lB, uB), new BFGSOptimizer.GradientTolerance(relativeThreshold), new BFGSOptimizer.StepLength(stepLength));
if (debug)
System.out.printf("BFGS Iter %d = %g (%d)\n", iteration, optimum.getValue(), opt.getEvaluations());
} catch (TooManyEvaluationsException e) {
// No need to restart
break;
} catch (RuntimeException e) {
// No need to restart
break;
} finally {
boundedEvaluations += opt.getEvaluations();
}
}
// Try a CMAES optimiser which is non-deterministic. To overcome this we perform restarts.
// CMAESOptimiser based on Matlab code:
// https://www.lri.fr/~hansen/cmaes.m
// Take the defaults from the Matlab documentation
//Double.NEGATIVE_INFINITY;
double stopFitness = 0;
boolean isActiveCMA = true;
int diagonalOnly = 0;
int checkFeasableCount = 1;
//Well19937c();
RandomGenerator random = new Well44497b();
boolean generateStatistics = false;
ConvergenceChecker<PointValuePair> checker = new SimpleValueChecker(1e-6, 1e-10);
// The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
double[] range = new double[lB.length];
for (int i = 0; i < lB.length; i++) range[i] = (uB[i] - lB[i]) / 3;
OptimizationData sigma = new CMAESOptimizer.Sigma(range);
OptimizationData popSize = new CMAESOptimizer.PopulationSize((int) (4 + Math.floor(3 * Math.log(initialSolution.length))));
SimpleBounds bounds = new SimpleBounds(lB, uB);
opt = new CMAESOptimizer(maxEvaluations.getMaxEval(), stopFitness, isActiveCMA, diagonalOnly, checkFeasableCount, random, generateStatistics, checker);
// Restart the optimiser several times and take the best answer.
for (int iteration = 0; iteration <= fitRestarts; iteration++) {
try {
// Start from the initial solution
PointValuePair constrainedSolution = opt.optimize(new InitialGuess(initialSolution), objective, GoalType.MINIMIZE, bounds, sigma, popSize, maxEvaluations);
if (debug)
System.out.printf("CMAES Iter %d initial = %g (%d)\n", iteration, constrainedSolution.getValue(), opt.getEvaluations());
boundedEvaluations += opt.getEvaluations();
if (optimum == null || constrainedSolution.getValue() < optimum.getValue()) {
optimum = constrainedSolution;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
} finally {
boundedEvaluations += maxEvaluations.getMaxEval();
}
if (optimum == null)
continue;
try {
// Also restart from the current optimum
PointValuePair constrainedSolution = opt.optimize(new InitialGuess(optimum.getPointRef()), objective, GoalType.MINIMIZE, bounds, sigma, popSize, maxEvaluations);
if (debug)
System.out.printf("CMAES Iter %d restart = %g (%d)\n", iteration, constrainedSolution.getValue(), opt.getEvaluations());
if (constrainedSolution.getValue() < optimum.getValue()) {
optimum = constrainedSolution;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
} finally {
boundedEvaluations += maxEvaluations.getMaxEval();
}
}
return optimum;
}
use of org.apache.commons.math3.optim.MaxEval in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method optimiseSimplex.
private double[] optimiseSimplex(float[] x, float[] y, double[] initialSolution) {
// Simplex optimisation
SkewNormalMultivariateFunction sn2 = new SkewNormalMultivariateFunction(initialSolution);
sn2.addData(x, y);
NelderMeadSimplex simplex = new NelderMeadSimplex(4);
SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
PointValuePair solution = opt.optimize(new MaxEval(1000), new InitialGuess(initialSolution), simplex, new ObjectiveFunction(sn2), GoalType.MINIMIZE);
double[] skewParameters2 = solution.getPointRef();
return skewParameters2;
}
use of org.apache.commons.math3.optim.MaxEval in project gatk by broadinstitute.
the class OptimizationUtils method argmax.
public static double argmax(final Function<Double, Double> function, final double min, final double max, final double guess, final double relativeTolerance, final double absoluteTolerance, final int maxEvaluations) {
final BrentOptimizer optimizer = new BrentOptimizer(relativeTolerance, absoluteTolerance);
final SearchInterval interval = new SearchInterval(min, max, guess);
return optimizer.optimize(new UnivariateObjectiveFunction(function::apply), GoalType.MAXIMIZE, interval, new MaxEval(maxEvaluations)).getPoint();
}
Aggregations