use of org.apache.commons.math3.optim.MaxEval in project GDSC-SMLM by aherbert.
the class FIRE method findMin.
private UnivariatePointValuePair findMin(UnivariatePointValuePair current, SimplexOptimizer o, MultivariateFunction f, double qValue) {
try {
NelderMeadSimplex simplex = new NelderMeadSimplex(1);
double[] initialSolution = { qValue };
PointValuePair solution = o.optimize(new MaxEval(1000), new InitialGuess(initialSolution), simplex, new ObjectiveFunction(f), GoalType.MINIMIZE);
UnivariatePointValuePair next = (solution == null) ? null : new UnivariatePointValuePair(solution.getPointRef()[0], solution.getValue());
if (next == null)
return current;
//System.out.printf("Simplex [%f] %f = %f\n", qValue, next.getPoint(), next.getValue());
if (current != null)
return (next.getValue() < current.getValue()) ? next : current;
return next;
} catch (Exception e) {
return current;
}
}
use of org.apache.commons.math3.optim.MaxEval in project GDSC-SMLM by aherbert.
the class FIRE method findMin.
private PointValuePair findMin(PointValuePair current, SimplexOptimizer o, MultivariateFunction f, double[] initialSolution) {
try {
NelderMeadSimplex simplex = new NelderMeadSimplex(initialSolution.length);
PointValuePair next = o.optimize(new MaxEval(1000), new InitialGuess(initialSolution), simplex, new ObjectiveFunction(f), GoalType.MINIMIZE);
if (next == null)
return current;
// Arrays.toString(next.getPointRef()), next.getValue());
if (current != null)
return (next.getValue() < current.getValue()) ? next : current;
return next;
} catch (Exception e) {
return current;
}
}
use of org.apache.commons.math3.optim.MaxEval in project GDSC-SMLM by aherbert.
the class FIRE method findMin.
private UnivariatePointValuePair findMin(UnivariatePointValuePair current, UnivariateOptimizer o, UnivariateFunction f, double qValue, double factor) {
try {
BracketFinder bracket = new BracketFinder();
bracket.search(f, GoalType.MINIMIZE, qValue * factor, qValue / factor);
UnivariatePointValuePair next = o.optimize(GoalType.MINIMIZE, new MaxEval(3000), new SearchInterval(bracket.getLo(), bracket.getHi(), bracket.getMid()), new UnivariateObjectiveFunction(f));
if (next == null)
return current;
//System.out.printf("LineMin [%.1f] %f = %f\n", factor, next.getPoint(), next.getValue());
if (current != null)
return (next.getValue() < current.getValue()) ? next : current;
return next;
} catch (Exception e) {
return current;
}
}
use of org.apache.commons.math3.optim.MaxEval in project GDSC-SMLM by aherbert.
the class EMGainAnalysis method getFunction.
private MultivariateFunction getFunction(final int[] limits, final double[] y, final int max, final int maxEval) {
MultivariateFunction fun = new MultivariateFunction() {
int eval = 0;
public double value(double[] point) {
IJ.showProgress(++eval, maxEval);
if (Utils.isInterrupted())
throw new TooManyEvaluationsException(maxEval);
// Compute the sum of squares between the two functions
double photons = point[0];
double gain = point[1];
double noise = point[2];
int bias = (int) Math.round(point[3]);
//System.out.printf("[%d] = %s\n", eval, Arrays.toString(point));
final double[] g = pdf(max, photons, gain, noise, bias);
double ss = 0;
for (int c = limits[0]; c <= limits[1]; c++) {
final double d = g[c] - y[c];
ss += d * d;
}
return ss;
}
};
return fun;
}
use of org.apache.commons.math3.optim.MaxEval in project GDSC-SMLM by aherbert.
the class EMGainAnalysis method fit.
/**
* Fit the EM-gain distribution (Gaussian * Gamma)
*
* @param h
* The distribution
*/
private void fit(int[] h) {
final int[] limits = limits(h);
final double[] x = getX(limits);
final double[] y = getY(h, limits);
Plot2 plot = new Plot2(TITLE, "ADU", "Frequency");
double yMax = Maths.max(y);
plot.setLimits(limits[0], limits[1], 0, yMax);
plot.setColor(Color.black);
plot.addPoints(x, y, Plot2.DOT);
Utils.display(TITLE, plot);
// Estimate remaining parameters.
// Assuming a gamma_distribution(shape,scale) then mean = shape * scale
// scale = gain
// shape = Photons = mean / gain
double mean = getMean(h) - bias;
// Note: if the bias is too high then the mean will be negative. Just move the bias.
while (mean < 0) {
bias -= 1;
mean += 1;
}
double photons = mean / gain;
if (simulate)
Utils.log("Simulated bias=%d, gain=%s, noise=%s, photons=%s", (int) _bias, Utils.rounded(_gain), Utils.rounded(_noise), Utils.rounded(_photons));
Utils.log("Estimate bias=%d, gain=%s, noise=%s, photons=%s", (int) bias, Utils.rounded(gain), Utils.rounded(noise), Utils.rounded(photons));
final int max = (int) x[x.length - 1];
double[] g = pdf(max, photons, gain, noise, (int) bias);
plot.setColor(Color.blue);
plot.addPoints(x, g, Plot2.LINE);
Utils.display(TITLE, plot);
// Perform a fit
CustomPowellOptimizer o = new CustomPowellOptimizer(1e-6, 1e-16, 1e-6, 1e-16);
double[] startPoint = new double[] { photons, gain, noise, bias };
int maxEval = 3000;
String[] paramNames = { "Photons", "Gain", "Noise", "Bias" };
// Set bounds
double[] lower = new double[] { 0, 0.5 * gain, 0, bias - noise };
double[] upper = new double[] { 2 * photons, 2 * gain, gain, bias + noise };
// Restart until converged.
// TODO - Maybe fix this with a better optimiser. This needs to be tested on real data.
PointValuePair solution = null;
for (int iter = 0; iter < 3; iter++) {
IJ.showStatus("Fitting histogram ... Iteration " + iter);
try {
// Basic Powell optimiser
MultivariateFunction fun = getFunction(limits, y, max, maxEval);
PointValuePair optimum = o.optimize(new MaxEval(maxEval), new ObjectiveFunction(fun), GoalType.MINIMIZE, new InitialGuess((solution == null) ? startPoint : solution.getPointRef()));
if (solution == null || optimum.getValue() < solution.getValue()) {
double[] point = optimum.getPointRef();
// Check the bounds
for (int i = 0; i < point.length; i++) {
if (point[i] < lower[i] || point[i] > upper[i]) {
throw new RuntimeException(String.format("Fit out of of estimated range: %s %f", paramNames[i], point[i]));
}
}
solution = optimum;
}
} catch (Exception e) {
IJ.log("Powell error: " + e.getMessage());
if (e instanceof TooManyEvaluationsException) {
maxEval = (int) (maxEval * 1.5);
}
}
try {
// Bounded Powell optimiser
MultivariateFunction fun = getFunction(limits, y, max, maxEval);
MultivariateFunctionMappingAdapter adapter = new MultivariateFunctionMappingAdapter(fun, lower, upper);
PointValuePair optimum = o.optimize(new MaxEval(maxEval), new ObjectiveFunction(adapter), GoalType.MINIMIZE, new InitialGuess(adapter.boundedToUnbounded((solution == null) ? startPoint : solution.getPointRef())));
double[] point = adapter.unboundedToBounded(optimum.getPointRef());
optimum = new PointValuePair(point, optimum.getValue());
if (solution == null || optimum.getValue() < solution.getValue()) {
solution = optimum;
}
} catch (Exception e) {
IJ.log("Bounded Powell error: " + e.getMessage());
if (e instanceof TooManyEvaluationsException) {
maxEval = (int) (maxEval * 1.5);
}
}
}
IJ.showStatus("");
IJ.showProgress(1);
if (solution == null) {
Utils.log("Failed to fit the distribution");
return;
}
double[] point = solution.getPointRef();
photons = point[0];
gain = point[1];
noise = point[2];
bias = (int) Math.round(point[3]);
String label = String.format("Fitted bias=%d, gain=%s, noise=%s, photons=%s", (int) bias, Utils.rounded(gain), Utils.rounded(noise), Utils.rounded(photons));
Utils.log(label);
if (simulate) {
Utils.log("Relative Error bias=%s, gain=%s, noise=%s, photons=%s", Utils.rounded(relativeError(bias, _bias)), Utils.rounded(relativeError(gain, _gain)), Utils.rounded(relativeError(noise, _noise)), Utils.rounded(relativeError(photons, _photons)));
}
// Show the PoissonGammaGaussian approximation
double[] f = null;
if (showApproximation) {
f = new double[x.length];
PoissonGammaGaussianFunction fun = new PoissonGammaGaussianFunction(1.0 / gain, noise);
final double expected = photons * gain;
for (int i = 0; i < f.length; i++) {
f[i] = fun.likelihood(x[i] - bias, expected);
//System.out.printf("x=%d, g=%f, f=%f, error=%f\n", (int) x[i], g[i], f[i],
// gdsc.smlm.fitting.utils.DoubleEquality.relativeError(g[i], f[i]));
}
yMax = Maths.maxDefault(yMax, f);
}
// Replot
g = pdf(max, photons, gain, noise, (int) bias);
plot = new Plot2(TITLE, "ADU", "Frequency");
plot.setLimits(limits[0], limits[1], 0, yMax * 1.05);
plot.setColor(Color.black);
plot.addPoints(x, y, Plot2.DOT);
plot.setColor(Color.red);
plot.addPoints(x, g, Plot2.LINE);
plot.addLabel(0, 0, label);
if (showApproximation) {
plot.setColor(Color.blue);
plot.addPoints(x, f, Plot2.LINE);
}
Utils.display(TITLE, plot);
}
Aggregations