use of gdsc.smlm.function.PoissonGammaGaussianFunction in project GDSC-SMLM by aherbert.
the class EMGainAnalysis method fit.
/**
* Fit the EM-gain distribution (Gaussian * Gamma)
*
* @param h
* The distribution
*/
private void fit(int[] h) {
final int[] limits = limits(h);
final double[] x = getX(limits);
final double[] y = getY(h, limits);
Plot2 plot = new Plot2(TITLE, "ADU", "Frequency");
double yMax = Maths.max(y);
plot.setLimits(limits[0], limits[1], 0, yMax);
plot.setColor(Color.black);
plot.addPoints(x, y, Plot2.DOT);
Utils.display(TITLE, plot);
// Estimate remaining parameters.
// Assuming a gamma_distribution(shape,scale) then mean = shape * scale
// scale = gain
// shape = Photons = mean / gain
double mean = getMean(h) - bias;
// Note: if the bias is too high then the mean will be negative. Just move the bias.
while (mean < 0) {
bias -= 1;
mean += 1;
}
double photons = mean / gain;
if (simulate)
Utils.log("Simulated bias=%d, gain=%s, noise=%s, photons=%s", (int) _bias, Utils.rounded(_gain), Utils.rounded(_noise), Utils.rounded(_photons));
Utils.log("Estimate bias=%d, gain=%s, noise=%s, photons=%s", (int) bias, Utils.rounded(gain), Utils.rounded(noise), Utils.rounded(photons));
final int max = (int) x[x.length - 1];
double[] g = pdf(max, photons, gain, noise, (int) bias);
plot.setColor(Color.blue);
plot.addPoints(x, g, Plot2.LINE);
Utils.display(TITLE, plot);
// Perform a fit
CustomPowellOptimizer o = new CustomPowellOptimizer(1e-6, 1e-16, 1e-6, 1e-16);
double[] startPoint = new double[] { photons, gain, noise, bias };
int maxEval = 3000;
String[] paramNames = { "Photons", "Gain", "Noise", "Bias" };
// Set bounds
double[] lower = new double[] { 0, 0.5 * gain, 0, bias - noise };
double[] upper = new double[] { 2 * photons, 2 * gain, gain, bias + noise };
// Restart until converged.
// TODO - Maybe fix this with a better optimiser. This needs to be tested on real data.
PointValuePair solution = null;
for (int iter = 0; iter < 3; iter++) {
IJ.showStatus("Fitting histogram ... Iteration " + iter);
try {
// Basic Powell optimiser
MultivariateFunction fun = getFunction(limits, y, max, maxEval);
PointValuePair optimum = o.optimize(new MaxEval(maxEval), new ObjectiveFunction(fun), GoalType.MINIMIZE, new InitialGuess((solution == null) ? startPoint : solution.getPointRef()));
if (solution == null || optimum.getValue() < solution.getValue()) {
double[] point = optimum.getPointRef();
// Check the bounds
for (int i = 0; i < point.length; i++) {
if (point[i] < lower[i] || point[i] > upper[i]) {
throw new RuntimeException(String.format("Fit out of of estimated range: %s %f", paramNames[i], point[i]));
}
}
solution = optimum;
}
} catch (Exception e) {
IJ.log("Powell error: " + e.getMessage());
if (e instanceof TooManyEvaluationsException) {
maxEval = (int) (maxEval * 1.5);
}
}
try {
// Bounded Powell optimiser
MultivariateFunction fun = getFunction(limits, y, max, maxEval);
MultivariateFunctionMappingAdapter adapter = new MultivariateFunctionMappingAdapter(fun, lower, upper);
PointValuePair optimum = o.optimize(new MaxEval(maxEval), new ObjectiveFunction(adapter), GoalType.MINIMIZE, new InitialGuess(adapter.boundedToUnbounded((solution == null) ? startPoint : solution.getPointRef())));
double[] point = adapter.unboundedToBounded(optimum.getPointRef());
optimum = new PointValuePair(point, optimum.getValue());
if (solution == null || optimum.getValue() < solution.getValue()) {
solution = optimum;
}
} catch (Exception e) {
IJ.log("Bounded Powell error: " + e.getMessage());
if (e instanceof TooManyEvaluationsException) {
maxEval = (int) (maxEval * 1.5);
}
}
}
IJ.showStatus("");
IJ.showProgress(1);
if (solution == null) {
Utils.log("Failed to fit the distribution");
return;
}
double[] point = solution.getPointRef();
photons = point[0];
gain = point[1];
noise = point[2];
bias = (int) Math.round(point[3]);
String label = String.format("Fitted bias=%d, gain=%s, noise=%s, photons=%s", (int) bias, Utils.rounded(gain), Utils.rounded(noise), Utils.rounded(photons));
Utils.log(label);
if (simulate) {
Utils.log("Relative Error bias=%s, gain=%s, noise=%s, photons=%s", Utils.rounded(relativeError(bias, _bias)), Utils.rounded(relativeError(gain, _gain)), Utils.rounded(relativeError(noise, _noise)), Utils.rounded(relativeError(photons, _photons)));
}
// Show the PoissonGammaGaussian approximation
double[] f = null;
if (showApproximation) {
f = new double[x.length];
PoissonGammaGaussianFunction fun = new PoissonGammaGaussianFunction(1.0 / gain, noise);
final double expected = photons * gain;
for (int i = 0; i < f.length; i++) {
f[i] = fun.likelihood(x[i] - bias, expected);
//System.out.printf("x=%d, g=%f, f=%f, error=%f\n", (int) x[i], g[i], f[i],
// gdsc.smlm.fitting.utils.DoubleEquality.relativeError(g[i], f[i]));
}
yMax = Maths.maxDefault(yMax, f);
}
// Replot
g = pdf(max, photons, gain, noise, (int) bias);
plot = new Plot2(TITLE, "ADU", "Frequency");
plot.setLimits(limits[0], limits[1], 0, yMax * 1.05);
plot.setColor(Color.black);
plot.addPoints(x, y, Plot2.DOT);
plot.setColor(Color.red);
plot.addPoints(x, g, Plot2.LINE);
plot.addLabel(0, 0, label);
if (showApproximation) {
plot.setColor(Color.blue);
plot.addPoints(x, f, Plot2.LINE);
}
Utils.display(TITLE, plot);
}
use of gdsc.smlm.function.PoissonGammaGaussianFunction in project GDSC-SMLM by aherbert.
the class EMGainAnalysis method plotPMF.
private void plotPMF() {
if (!showPMFDialog())
return;
final int gaussWidth = 5;
int dummyBias = (int) Math.max(500, gaussWidth * _noise + 1);
double[] pmf = pdf(0, _photons, _gain, _noise, dummyBias);
double[] x = Utils.newArray(pmf.length, 0, 1.0);
double yMax = Maths.max(pmf);
// Truncate x
int max = 0;
double sum = 0;
double p = 1 - tail;
while (sum < p && max < pmf.length) {
sum += pmf[max];
if (sum > 0.5 && pmf[max] == 0)
break;
max++;
}
int min = pmf.length;
sum = 0;
p = 1 - head;
while (sum < p && min > 0) {
min--;
sum += pmf[min];
if (sum > 0.5 && pmf[min] == 0)
break;
}
//int min = (int) (dummyBias - gaussWidth * _noise);
pmf = Arrays.copyOfRange(pmf, min, max);
x = Arrays.copyOfRange(x, min, max);
// Get the approximation
double[] f = new double[x.length];
LikelihoodFunction fun;
double myNoise = _noise;
switch(approximation) {
case 3:
fun = new PoissonFunction(1.0 / _gain, true);
break;
case 2:
// The mean does not matter so just use zero
fun = PoissonGaussianFunction.createWithStandardDeviation(1.0 / _gain, 0, _noise);
break;
case 1:
myNoise = 0;
case 0:
default:
PoissonGammaGaussianFunction myFun = new PoissonGammaGaussianFunction(1.0 / _gain, myNoise);
myFun.setMinimumProbability(0);
fun = myFun;
}
double expected = _photons;
if (offset != 0)
expected += offset * expected / 100.0;
expected *= _gain;
//double sum2 = 0;
for (int i = 0; i < f.length; i++) {
// Adjust the x-values to remove the dummy bias
x[i] -= dummyBias;
f[i] = fun.likelihood(x[i], expected);
//sum += pmf[i];
//sum2 += f[i];
}
//System.out.printf("Approximation sum = %f : %f\n", sum ,sum2);
if (showApproximation)
yMax = Maths.maxDefault(yMax, f);
String label = String.format("Gain=%s, noise=%s, photons=%s", Utils.rounded(_gain), Utils.rounded(_noise), Utils.rounded(_photons));
Plot2 plot = new Plot2("PMF", "ADUs", "p");
plot.setLimits(x[0], x[x.length - 1], 0, yMax);
plot.setColor(Color.red);
plot.addPoints(x, pmf, Plot2.LINE);
if (showApproximation) {
plot.setColor(Color.blue);
plot.addPoints(x, f, Plot2.LINE);
}
plot.setColor(Color.magenta);
plot.drawLine(_photons * _gain, 0, _photons * _gain, yMax);
plot.setColor(Color.black);
plot.addLabel(0, 0, label);
PlotWindow win1 = Utils.display("PMF", plot);
// Plot the difference between the actual and approximation
double[] delta = new double[f.length];
for (int i = 0; i < f.length; i++) {
if (pmf[i] == 0 && f[i] == 0)
continue;
if (relativeDelta)
delta[i] = DoubleEquality.relativeError(f[i], pmf[i]) * Math.signum(f[i] - pmf[i]);
else
delta[i] = f[i] - pmf[i];
}
Plot2 plot2 = new Plot2("PMF delta", "ADUs", (relativeDelta) ? "Relative delta" : "delta");
double[] limits = Maths.limits(delta);
plot2.setLimits(x[0], x[x.length - 1], limits[0], limits[1]);
plot2.setColor(Color.red);
plot2.addPoints(x, delta, Plot2.LINE);
plot2.setColor(Color.magenta);
plot2.drawLine(_photons * _gain, limits[0], _photons * _gain, limits[1]);
plot2.setColor(Color.black);
plot2.addLabel(0, 0, label + ((offset == 0) ? "" : ", expected = " + Utils.rounded(expected / _gain)));
PlotWindow win2 = Utils.display("PMF delta", plot2);
if (Utils.isNewWindow()) {
Point p2 = win2.getLocation();
p2.y += win1.getHeight();
win2.setLocation(p2);
}
}
Aggregations