use of org.apache.commons.math3.stat.descriptive.rank.Min in project GDSC-SMLM by aherbert.
the class SpotInspector method run.
/*
* (non-Javadoc)
*
* @see ij.plugin.PlugIn#run(java.lang.String)
*/
public void run(String arg) {
SMLMUsageTracker.recordPlugin(this.getClass(), arg);
if (MemoryPeakResults.isMemoryEmpty()) {
IJ.error(TITLE, "No localisations in memory");
return;
}
if (!showDialog())
return;
// Load the results
results = ResultsManager.loadInputResults(inputOption, false);
if (results == null || results.size() == 0) {
IJ.error(TITLE, "No results could be loaded");
IJ.showStatus("");
return;
}
// Check if the original image is open
ImageSource source = results.getSource();
if (source == null) {
IJ.error(TITLE, "Unknown original source image");
return;
}
source = source.getOriginal();
if (!source.open()) {
IJ.error(TITLE, "Cannot open original source image: " + source.toString());
return;
}
final float stdDevMax = getStandardDeviation(results);
if (stdDevMax < 0) {
// TODO - Add dialog to get the initial peak width
IJ.error(TITLE, "Fitting configuration (for initial peak width) is not available");
return;
}
// Rank spots
rankedResults = new ArrayList<PeakResultRank>(results.size());
final double a = results.getNmPerPixel();
final double gain = results.getGain();
final boolean emCCD = results.isEMCCD();
for (PeakResult r : results.getResults()) {
float[] score = getScore(r, a, gain, emCCD, stdDevMax);
rankedResults.add(new PeakResultRank(r, score[0], score[1]));
}
Collections.sort(rankedResults);
// Prepare results table. Get bias if necessary
if (showCalibratedValues) {
// Get a bias if required
Calibration calibration = results.getCalibration();
if (calibration.getBias() == 0) {
ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
gd.addMessage("Calibrated results requires a camera bias");
gd.addNumericField("Camera_bias (ADUs)", calibration.getBias(), 2);
gd.showDialog();
if (!gd.wasCanceled()) {
calibration.setBias(Math.abs(gd.getNextNumber()));
}
}
}
IJTablePeakResults table = new IJTablePeakResults(false, results.getName(), true);
table.copySettings(results);
table.setTableTitle(TITLE);
table.setAddCounter(true);
table.setShowCalibratedValues(showCalibratedValues);
table.begin();
// Add a mouse listener to jump to the frame for the clicked line
textPanel = table.getResultsWindow().getTextPanel();
// We must ignore old instances of this class from the mouse listeners
id = ++currentId;
textPanel.addMouseListener(this);
// Add results to the table
int n = 0;
for (PeakResultRank rank : rankedResults) {
rank.rank = n++;
PeakResult r = rank.peakResult;
table.add(r.getFrame(), r.origX, r.origY, r.origValue, r.error, r.noise, r.params, r.paramsStdDev);
}
table.end();
if (plotScore || plotHistogram) {
// Get values for the plots
float[] xValues = null, yValues = null;
double yMin, yMax;
int spotNumber = 0;
xValues = new float[rankedResults.size()];
yValues = new float[xValues.length];
for (PeakResultRank rank : rankedResults) {
xValues[spotNumber] = spotNumber + 1;
yValues[spotNumber++] = recoverScore(rank.score);
}
// Set the min and max y-values using 1.5 x IQR
DescriptiveStatistics stats = new DescriptiveStatistics();
for (float v : yValues) stats.addValue(v);
if (removeOutliers) {
double lower = stats.getPercentile(25);
double upper = stats.getPercentile(75);
double iqr = upper - lower;
yMin = FastMath.max(lower - iqr, stats.getMin());
yMax = FastMath.min(upper + iqr, stats.getMax());
IJ.log(String.format("Data range: %f - %f. Plotting 1.5x IQR: %f - %f", stats.getMin(), stats.getMax(), yMin, yMax));
} else {
yMin = stats.getMin();
yMax = stats.getMax();
IJ.log(String.format("Data range: %f - %f", yMin, yMax));
}
plotScore(xValues, yValues, yMin, yMax);
plotHistogram(yValues, yMin, yMax);
}
// Extract spots into a stack
final int w = source.getWidth();
final int h = source.getHeight();
final int size = 2 * radius + 1;
ImageStack spots = new ImageStack(size, size, rankedResults.size());
// To assist the extraction of data from the image source, process them in time order to allow
// frame caching. Then set the appropriate slice in the result stack
Collections.sort(rankedResults, new Comparator<PeakResultRank>() {
public int compare(PeakResultRank o1, PeakResultRank o2) {
if (o1.peakResult.getFrame() < o2.peakResult.getFrame())
return -1;
if (o1.peakResult.getFrame() > o2.peakResult.getFrame())
return 1;
return 0;
}
});
for (PeakResultRank rank : rankedResults) {
PeakResult r = rank.peakResult;
// Extract image
// Note that the coordinates are relative to the middle of the pixel (0.5 offset)
// so do not round but simply convert to int
final int x = (int) (r.params[Gaussian2DFunction.X_POSITION]);
final int y = (int) (r.params[Gaussian2DFunction.Y_POSITION]);
// Extract a region but crop to the image bounds
int minX = x - radius;
int minY = y - radius;
int maxX = FastMath.min(x + radius + 1, w);
int maxY = FastMath.min(y + radius + 1, h);
int padX = 0, padY = 0;
if (minX < 0) {
padX = -minX;
minX = 0;
}
if (minY < 0) {
padY = -minY;
minY = 0;
}
int sizeX = maxX - minX;
int sizeY = maxY - minY;
float[] data = source.get(r.getFrame(), new Rectangle(minX, minY, sizeX, sizeY));
// Prevent errors with missing data
if (data == null)
data = new float[sizeX * sizeY];
ImageProcessor spotIp = new FloatProcessor(sizeX, sizeY, data, null);
// Pad if necessary, i.e. the crop is too small for the stack
if (padX > 0 || padY > 0 || sizeX < size || sizeY < size) {
ImageProcessor spotIp2 = spotIp.createProcessor(size, size);
spotIp2.insert(spotIp, padX, padY);
spotIp = spotIp2;
}
int slice = rank.rank + 1;
spots.setPixels(spotIp.getPixels(), slice);
spots.setSliceLabel(Utils.rounded(rank.originalScore), slice);
}
source.close();
ImagePlus imp = Utils.display(TITLE, spots);
imp.setRoi((PointRoi) null);
// Make bigger
for (int i = 10; i-- > 0; ) imp.getWindow().getCanvas().zoomIn(imp.getWidth() / 2, imp.getHeight() / 2);
}
use of org.apache.commons.math3.stat.descriptive.rank.Min in project gatk by broadinstitute.
the class OptimizationUtils method argmax.
public static double argmax(final Function<Double, Double> function, final double min, final double max, final double guess, final double relativeTolerance, final double absoluteTolerance, final int maxEvaluations) {
final BrentOptimizer optimizer = new BrentOptimizer(relativeTolerance, absoluteTolerance);
final SearchInterval interval = new SearchInterval(min, max, guess);
return optimizer.optimize(new UnivariateObjectiveFunction(function::apply), GoalType.MAXIMIZE, interval, new MaxEval(maxEvaluations)).getPoint();
}
use of org.apache.commons.math3.stat.descriptive.rank.Min in project gatk-protected by broadinstitute.
the class OptimizationUtils method argmax.
public static double argmax(final Function<Double, Double> function, final double min, final double max, final double guess, final double relativeTolerance, final double absoluteTolerance, final int maxEvaluations) {
final BrentOptimizer optimizer = new BrentOptimizer(relativeTolerance, absoluteTolerance);
final SearchInterval interval = new SearchInterval(min, max, guess);
return optimizer.optimize(new UnivariateObjectiveFunction(function::apply), GoalType.MAXIMIZE, interval, new MaxEval(maxEvaluations)).getPoint();
}
use of org.apache.commons.math3.stat.descriptive.rank.Min in project gatk by broadinstitute.
the class PosteriorSummaryUtils method calculatePosteriorMode.
/**
* Given a list of posterior samples, returns an estimate of the posterior mode (using
* mllib kernel density estimation in {@link KernelDensity} and {@link BrentOptimizer}).
* Note that estimate may be poor if number of samples is small (resulting in poor kernel density estimation),
* or if posterior is not unimodal (or is sufficiently pathological otherwise). If the samples contain
* {@link Double#NaN}, {@link Double#NaN} will be returned.
* @param samples posterior samples, cannot be {@code null} and number of samples must be greater than 0
* @param ctx {@link JavaSparkContext} used by {@link KernelDensity} for mllib kernel density estimation
*/
public static double calculatePosteriorMode(final List<Double> samples, final JavaSparkContext ctx) {
Utils.nonNull(samples);
Utils.validateArg(samples.size() > 0, "Number of samples must be greater than zero.");
//calculate sample min, max, mean, and standard deviation
final double sampleMin = Collections.min(samples);
final double sampleMax = Collections.max(samples);
final double sampleMean = new Mean().evaluate(Doubles.toArray(samples));
final double sampleStandardDeviation = new StandardDeviation().evaluate(Doubles.toArray(samples));
//if samples are all the same or contain NaN, can simply return mean
if (sampleStandardDeviation == 0. || Double.isNaN(sampleMean)) {
return sampleMean;
}
//use Silverman's rule to set bandwidth for kernel density estimation from sample standard deviation
//see https://en.wikipedia.org/wiki/Kernel_density_estimation#Practical_estimation_of_the_bandwidth
final double bandwidth = SILVERMANS_RULE_CONSTANT * sampleStandardDeviation * Math.pow(samples.size(), SILVERMANS_RULE_EXPONENT);
//use kernel density estimation to approximate posterior from samples
final KernelDensity pdf = new KernelDensity().setSample(ctx.parallelize(samples, 1)).setBandwidth(bandwidth);
//use Brent optimization to find mode (i.e., maximum) of kernel-density-estimated posterior
final BrentOptimizer optimizer = new BrentOptimizer(RELATIVE_TOLERANCE, RELATIVE_TOLERANCE * (sampleMax - sampleMin));
final UnivariateObjectiveFunction objective = new UnivariateObjectiveFunction(f -> pdf.estimate(new double[] { f })[0]);
//search for mode within sample range, start near sample mean
final SearchInterval searchInterval = new SearchInterval(sampleMin, sampleMax, sampleMean);
return optimizer.optimize(objective, GoalType.MAXIMIZE, searchInterval, BRENT_MAX_EVAL).getPoint();
}
use of org.apache.commons.math3.stat.descriptive.rank.Min in project dhis2-core by dhis2.
the class DefaultChartService method getJFreeChartHistory.
@Override
public JFreeChart getJFreeChartHistory(DataElement dataElement, DataElementCategoryOptionCombo categoryOptionCombo, DataElementCategoryOptionCombo attributeOptionCombo, Period lastPeriod, OrganisationUnit organisationUnit, int historyLength, I18nFormat format) {
lastPeriod = periodService.reloadPeriod(lastPeriod);
List<Period> periods = periodService.getPeriods(lastPeriod, historyLength);
MinMaxDataElement minMax = minMaxDataElementService.getMinMaxDataElement(organisationUnit, dataElement, categoryOptionCombo);
UnivariateInterpolator interpolator = new SplineInterpolator();
Integer periodCount = 0;
List<Double> x = new ArrayList<>();
List<Double> y = new ArrayList<>();
// ---------------------------------------------------------------------
// DataValue, MinValue and MaxValue DataSets
// ---------------------------------------------------------------------
DefaultCategoryDataset dataValueDataSet = new DefaultCategoryDataset();
DefaultCategoryDataset metaDataSet = new DefaultCategoryDataset();
for (Period period : periods) {
++periodCount;
period.setName(format.formatPeriod(period));
DataValue dataValue = dataValueService.getDataValue(dataElement, period, organisationUnit, categoryOptionCombo, attributeOptionCombo);
double value = 0;
if (dataValue != null && dataValue.getValue() != null && MathUtils.isNumeric(dataValue.getValue())) {
value = Double.parseDouble(dataValue.getValue());
x.add(periodCount.doubleValue());
y.add(value);
}
dataValueDataSet.addValue(value, dataElement.getShortName(), period.getName());
if (minMax != null) {
metaDataSet.addValue(minMax.getMin(), "Min value", period.getName());
metaDataSet.addValue(minMax.getMax(), "Max value", period.getName());
}
}
if (// minimum 3 points required for interpolation
x.size() >= 3) {
periodCount = 0;
double[] xa = getArray(x);
int min = MathUtils.getMin(xa).intValue();
int max = MathUtils.getMax(xa).intValue();
try {
UnivariateFunction function = interpolator.interpolate(xa, getArray(y));
for (Period period : periods) {
if (++periodCount >= min && periodCount <= max) {
metaDataSet.addValue(function.value(periodCount), "Regression value", period.getName());
}
}
} catch (MathRuntimeException ex) {
throw new RuntimeException("Failed to interpolate", ex);
}
}
// ---------------------------------------------------------------------
// Plots
// ---------------------------------------------------------------------
CategoryPlot plot = getCategoryPlot(dataValueDataSet, getBarRenderer(), PlotOrientation.VERTICAL, CategoryLabelPositions.UP_45);
plot.setDataset(1, metaDataSet);
plot.setRenderer(1, getLineRenderer());
JFreeChart jFreeChart = getBasicJFreeChart(plot);
return jFreeChart;
}
Aggregations