use of org.apache.commons.math3.util.Precision in project metron by apache.
the class HLLPMeasurement method main.
public static void main(String[] args) {
Options options = new Options();
try {
CommandLineParser parser = new PosixParser();
CommandLine cmd = null;
try {
cmd = ParserOptions.parse(parser, args);
} catch (ParseException pe) {
pe.printStackTrace();
final HelpFormatter usageFormatter = new HelpFormatter();
usageFormatter.printHelp("HLLPMeasurement", null, options, null, true);
System.exit(-1);
}
if (cmd.hasOption("h")) {
final HelpFormatter usageFormatter = new HelpFormatter();
usageFormatter.printHelp("HLLPMeasurement", null, options, null, true);
System.exit(0);
}
final String chartDelim = ParserOptions.CHART_DELIM.get(cmd, "|");
final int numTrials = Integer.parseInt(ParserOptions.NUM_TRIALS.get(cmd, "5000"));
final int cardMin = Integer.parseInt(ParserOptions.CARD_MIN.get(cmd, "200"));
final int cardMax = Integer.parseInt(ParserOptions.CARD_MAX.get(cmd, "1000"));
final int cardStep = Integer.parseInt(ParserOptions.CARD_STEP.get(cmd, "200"));
final int cardStart = (((cardMin - 1) / cardStep) * cardStep) + cardStep;
final int spMin = Integer.parseInt(ParserOptions.SP_MIN.get(cmd, "4"));
final int spMax = Integer.parseInt(ParserOptions.SP_MAX.get(cmd, "32"));
final int spStep = Integer.parseInt(ParserOptions.SP_STEP.get(cmd, "4"));
final int pMin = Integer.parseInt(ParserOptions.P_MIN.get(cmd, "4"));
final int pMax = Integer.parseInt(ParserOptions.P_MAX.get(cmd, "32"));
final int pStep = Integer.parseInt(ParserOptions.P_STEP.get(cmd, "4"));
final double errorPercentile = Double.parseDouble(ParserOptions.ERR_PERCENTILE.get(cmd, "50"));
final double timePercentile = Double.parseDouble(ParserOptions.TIME_PERCENTILE.get(cmd, "50"));
final double sizePercentile = Double.parseDouble(ParserOptions.SIZE_PERCENTILE.get(cmd, "50"));
final boolean formatErrPercent = Boolean.parseBoolean(ParserOptions.ERR_FORMAT_PERCENT.get(cmd, "true"));
final int errMultiplier = formatErrPercent ? 100 : 1;
final Function<Double, String> errorFormatter = (v -> ERR_FORMAT.format(v * errMultiplier));
final Function<Double, String> timeFormatter = (v -> TIME_FORMAT.format(v / NANO_TO_MILLIS));
final Function<Double, String> sizeFormatter = (v -> SIZE_FORMAT.format(v));
final String[] chartKey = new String[] { "card: cardinality", "sp: sparse precision value", "p: normal precision value", "err: error as a percent of the expected cardinality; ", "time: total time to add all values to the hllp estimator and calculate a cardinality estimate", "size: size of the hllp set in bytes once all values have been added for the specified cardinality", "l=low, m=mid(based on percentile chosen), h=high, std=standard deviation" };
final String[] chartHeader = new String[] { "card", "sp", "p", "err l/m/h/std (% of actual)", "time l/m/h/std (ms)", "size l/m/h/std (b)" };
final int[] chartPadding = new int[] { 10, 10, 10, 40, 40, 30 };
if (spMin < pMin) {
throw new IllegalArgumentException("p must be <= sp");
}
if (spMax < pMax) {
throw new IllegalArgumentException("p must be <= sp");
}
println("Options Used");
println("------------");
println("num trials: " + numTrials);
println("card min: " + cardMin);
println("card max: " + cardMax);
println("card step: " + cardStep);
println("card start: " + cardStart);
println("sp min: " + spMin);
println("sp max: " + spMax);
println("sp step: " + spStep);
println("p min: " + pMin);
println("p max: " + pMax);
println("p step: " + pStep);
println("error percentile: " + errorPercentile);
println("time percentile: " + timePercentile);
println("size percentile: " + sizePercentile);
println("format err as %: " + formatErrPercent);
println("");
printHeading(chartKey, chartHeader, chartPadding, chartDelim);
for (int c = cardStart; c <= cardMax; c += cardStep) {
for (int sp = spMin; sp <= spMax; sp += spStep) {
for (int p = pMin; p <= pMax; p += pStep) {
DescriptiveStatistics errorStats = new DescriptiveStatistics();
DescriptiveStatistics timeStats = new DescriptiveStatistics();
DescriptiveStatistics sizeStats = new DescriptiveStatistics();
for (int i = 0; i < numTrials; i++) {
List<Object> trialSet = buildTrialSet(c);
Set unique = new HashSet();
unique.addAll(trialSet);
long distinctVals = unique.size();
HyperLogLogPlus hllp = new HyperLogLogPlus(p, sp);
long timeStart = System.nanoTime();
hllp.addAll(trialSet);
long dvEstimate = hllp.cardinality();
long timeEnd = System.nanoTime();
long timeElapsed = timeEnd - timeStart;
double rawError = Math.abs(dvEstimate - distinctVals) / (double) distinctVals;
errorStats.addValue(rawError);
timeStats.addValue(timeElapsed);
sizeStats.addValue(SerDeUtils.toBytes(hllp).length);
}
MeasureResultFormatter errorRF = new MeasureResultFormatter(errorStats, errorFormatter, errorPercentile);
MeasureResultFormatter timeRF = new MeasureResultFormatter(timeStats, timeFormatter, timePercentile);
MeasureResultFormatter sizeRF = new MeasureResultFormatter(sizeStats, sizeFormatter, sizePercentile);
println(formatWithPadding(new String[] { "" + c, "" + sp, "" + p, errorRF.getFormattedResults(), timeRF.getFormattedResults(), sizeRF.getFormattedResults() }, chartPadding, chartDelim));
}
}
}
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
use of org.apache.commons.math3.util.Precision in project GDSC-SMLM by aherbert.
the class CreateData method showSummary.
private double showSummary(List<? extends FluorophoreSequenceModel> fluorophores, List<LocalisationModel> localisations) {
IJ.showStatus("Calculating statistics ...");
createSummaryTable();
Statistics[] stats = new Statistics[NAMES.length];
for (int i = 0; i < stats.length; i++) {
stats[i] = (settings.showHistograms || alwaysRemoveOutliers[i]) ? new StoredDataStatistics() : new Statistics();
}
// Find the largest timepoint
ImagePlus outputImp = WindowManager.getImage(benchmarkImageId);
int nFrames;
if (outputImp == null) {
sortLocalisationsByTime(localisations);
nFrames = localisations.get(localisations.size() - 1).getTime();
} else {
nFrames = outputImp.getStackSize();
}
int[] countHistogram = new int[nFrames + 1];
// Use the localisations that were drawn to create the sampled on/off times
rebuildNeighbours(localisations);
// Assume that there is at least one localisation
LocalisationModel first = localisations.get(0);
// The current localisation
int currentId = first.getId();
// The last time this localisation was on
int lastT = first.getTime();
// Number of blinks
int blinks = 0;
// On-time of current pulse
int currentT = 0;
double signal = 0;
final double centreOffset = settings.size * 0.5;
// Used to convert the sampled times in frames into seconds
final double framesPerSecond = 1000.0 / settings.exposureTime;
final double gain = (settings.getTotalGain() > 0) ? settings.getTotalGain() : 1;
for (LocalisationModel l : localisations) {
if (l.getData() == null)
System.out.println("No localisation data. This should not happen!");
final double noise = (l.getData() != null) ? l.getData()[1] : 1;
final double intensity = (l.getData() != null) ? l.getData()[4] : l.getIntensity();
final double intensityInPhotons = intensity / gain;
// Q. What if the noise is zero, i.e. no background photon / read noise?
// Just ignore it at current.
final double snr = intensity / noise;
stats[SIGNAL].add(intensityInPhotons);
stats[NOISE].add(noise / gain);
if (noise != 0)
stats[SNR].add(snr);
//if (l.isContinuous())
if (l.getNext() != null && l.getPrevious() != null) {
stats[SIGNAL_CONTINUOUS].add(intensityInPhotons);
if (noise != 0)
stats[SNR_CONTINUOUS].add(snr);
}
int id = l.getId();
// Check if this a new fluorophore
if (currentId != id) {
// Add previous fluorophore
stats[SAMPLED_BLINKS].add(blinks);
stats[SAMPLED_T_ON].add(currentT / framesPerSecond);
stats[TOTAL_SIGNAL].add(signal);
// Reset
blinks = 0;
currentT = 1;
currentId = id;
signal = intensityInPhotons;
} else {
signal += intensityInPhotons;
// Check if the current fluorophore pulse is broken (i.e. a blink)
if (l.getTime() - 1 > lastT) {
blinks++;
stats[SAMPLED_T_ON].add(currentT / framesPerSecond);
currentT = 1;
stats[SAMPLED_T_OFF].add(((l.getTime() - 1) - lastT) / framesPerSecond);
} else {
// Continuous on-time
currentT++;
}
}
lastT = l.getTime();
countHistogram[lastT]++;
stats[X].add((l.getX() - centreOffset) * settings.pixelPitch);
stats[Y].add((l.getY() - centreOffset) * settings.pixelPitch);
stats[Z].add(l.getZ() * settings.pixelPitch);
}
// Final fluorophore
stats[SAMPLED_BLINKS].add(blinks);
stats[SAMPLED_T_ON].add(currentT / framesPerSecond);
stats[TOTAL_SIGNAL].add(signal);
// Samples per frame
for (int t = 1; t < countHistogram.length; t++) stats[SAMPLES].add(countHistogram[t]);
if (fluorophores != null) {
for (FluorophoreSequenceModel f : fluorophores) {
stats[BLINKS].add(f.getNumberOfBlinks());
// On-time
for (double t : f.getOnTimes()) stats[T_ON].add(t);
// Off-time
for (double t : f.getOffTimes()) stats[T_OFF].add(t);
}
} else {
// show no blinks
stats[BLINKS].add(0);
stats[T_ON].add(1);
//stats[T_OFF].add(0);
}
if (results != null) {
final boolean emCCD = (settings.getEmGain() > 1);
// Convert depth-of-field to pixels
final double depth = settings.depthOfField / settings.pixelPitch;
for (PeakResult r : results.getResults()) {
final double precision = r.getPrecision(settings.pixelPitch, gain, emCCD);
stats[PRECISION].add(precision);
// The error stores the z-depth in pixels
if (Math.abs(r.error) < depth)
stats[PRECISION_IN_FOCUS].add(precision);
stats[WIDTH].add(r.getSD());
}
// Compute density per frame. Multithread for speed
if (settings.densityRadius > 0) {
IJ.showStatus("Calculating density ...");
ExecutorService threadPool = Executors.newFixedThreadPool(Prefs.getThreads());
List<Future<?>> futures = new LinkedList<Future<?>>();
final ArrayList<float[]> coords = new ArrayList<float[]>();
int t = results.getHead().getFrame();
final Statistics densityStats = stats[DENSITY];
final float radius = (float) (settings.densityRadius * getHWHM());
final Rectangle bounds = results.getBounds();
currentIndex = 0;
finalIndex = results.getTail().getFrame();
// Store the density for each result.
int[] allDensity = new int[results.size()];
int allIndex = 0;
for (PeakResult r : results.getResults()) {
if (t != r.getFrame()) {
allIndex += runDensityCalculation(threadPool, futures, coords, densityStats, radius, bounds, allDensity, allIndex);
}
coords.add(new float[] { r.getXPosition(), r.getYPosition() });
t = r.getFrame();
}
runDensityCalculation(threadPool, futures, coords, densityStats, radius, bounds, allDensity, allIndex);
Utils.waitForCompletion(futures);
threadPool.shutdownNow();
threadPool = null;
IJ.showProgress(1);
// Split results into singles (density = 0) and clustered (density > 0)
MemoryPeakResults singles = copyMemoryPeakResults("No Density");
MemoryPeakResults clustered = copyMemoryPeakResults("Density");
int i = 0;
for (PeakResult r : results.getResults()) {
// Store density in the original value field
r.origValue = allDensity[i];
if (allDensity[i++] == 0)
singles.add(r);
else
clustered.add(r);
}
}
}
StringBuilder sb = new StringBuilder();
sb.append(datasetNumber).append("\t");
sb.append((fluorophores == null) ? localisations.size() : fluorophores.size()).append("\t");
sb.append(stats[SAMPLED_BLINKS].getN() + (int) stats[SAMPLED_BLINKS].getSum()).append("\t");
sb.append(localisations.size()).append("\t");
sb.append(nFrames).append("\t");
sb.append(Utils.rounded(areaInUm)).append("\t");
sb.append(Utils.rounded(localisations.size() / (areaInUm * nFrames), 4)).append("\t");
sb.append(Utils.rounded(getHWHM(), 4)).append("\t");
double s = getPsfSD();
sb.append(Utils.rounded(s, 4)).append("\t");
s *= settings.pixelPitch;
final double sa = PSFCalculator.squarePixelAdjustment(s, settings.pixelPitch) / settings.pixelPitch;
sb.append(Utils.rounded(sa, 4)).append("\t");
// Width not valid for the Image PSF
int nStats = (imagePSF) ? stats.length - 1 : stats.length;
for (int i = 0; i < nStats; i++) {
double centre = (alwaysRemoveOutliers[i]) ? ((StoredDataStatistics) stats[i]).getStatistics().getPercentile(50) : stats[i].getMean();
sb.append(Utils.rounded(centre, 4)).append("\t");
}
if (java.awt.GraphicsEnvironment.isHeadless()) {
IJ.log(sb.toString());
return stats[SIGNAL].getMean();
} else {
summaryTable.append(sb.toString());
}
// Show histograms
if (settings.showHistograms) {
IJ.showStatus("Calculating histograms ...");
boolean[] chosenHistograms = getChoosenHistograms();
WindowOrganiser wo = new WindowOrganiser();
boolean requireRetile = false;
for (int i = 0; i < NAMES.length; i++) {
if (chosenHistograms[i]) {
wo.add(Utils.showHistogram(TITLE, (StoredDataStatistics) stats[i], NAMES[i], (integerDisplay[i]) ? 1 : 0, (settings.removeOutliers || alwaysRemoveOutliers[i]) ? 2 : 0, settings.histogramBins * ((integerDisplay[i]) ? 100 : 1)));
requireRetile = requireRetile || Utils.isNewWindow();
}
}
wo.tile();
}
IJ.showStatus("");
return stats[SIGNAL].getMean();
}
use of org.apache.commons.math3.util.Precision in project GDSC-SMLM by aherbert.
the class PulseActivationAnalysis method simulateActivations.
private int simulateActivations(RandomDataGenerator rdg, BinomialDistribution bd, float[][] molecules, MemoryPeakResults results, int t, double precision, int id) {
if (bd == null)
return 0;
int n = molecules.length;
int k = bd.sample();
// Sample
RandomGenerator rand = rdg.getRandomGenerator();
int[] sample = Random.sample(k, n, rand);
while (k-- > 0) {
float[] xy = molecules[sample[k]];
float x, y;
do {
x = (float) (xy[0] + rand.nextGaussian() * precision);
} while (outOfBounds(x));
do {
y = (float) (xy[1] + rand.nextGaussian() * precision);
} while (outOfBounds(y));
results.add(createResult(t, x, y));
}
return sample.length;
}
use of org.apache.commons.math3.util.Precision in project GDSC-SMLM by aherbert.
the class PCPALMFitting method fitRandomModel.
/**
* Fits the correlation curve with r>0 to the random model using the estimated density and precision. Parameters
* must be fit within a tolerance of the starting values.
*
* @param gr
* @param sigmaS
* The estimated precision
* @param proteinDensity
* The estimate protein density
* @return The fitted parameters [precision, density]
*/
private double[] fitRandomModel(double[][] gr, double sigmaS, double proteinDensity, String resultColour) {
final RandomModelFunction function = new RandomModelFunction();
randomModel = function;
log("Fitting %s: Estimated precision = %f nm, estimated protein density = %g um^-2", randomModel.getName(), sigmaS, proteinDensity * 1e6);
randomModel.setLogging(true);
for (int i = offset; i < gr[0].length; i++) {
// Only fit the curve above the estimated resolution (points below it will be subject to error)
if (gr[0][i] > sigmaS * fitAboveEstimatedPrecision)
randomModel.addPoint(gr[0][i], gr[1][i]);
}
LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
Optimum optimum;
try {
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(new double[] { sigmaS, proteinDensity }).target(function.getY()).weight(new DiagonalMatrix(function.getWeights())).model(function, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return function.jacobian(point);
}
}).build();
//@formatter:on
optimum = optimizer.optimize(problem);
} catch (TooManyIterationsException e) {
log("Failed to fit %s: Too many iterations (%s)", randomModel.getName(), e.getMessage());
return null;
} catch (ConvergenceException e) {
log("Failed to fit %s: %s", randomModel.getName(), e.getMessage());
return null;
}
randomModel.setLogging(false);
double[] parameters = optimum.getPoint().toArray();
// Ensure the width is positive
parameters[0] = Math.abs(parameters[0]);
double ss = optimum.getResiduals().dotProduct(optimum.getResiduals());
ic1 = Maths.getAkaikeInformationCriterionFromResiduals(ss, randomModel.size(), parameters.length);
final double fitSigmaS = parameters[0];
final double fitProteinDensity = parameters[1];
// Check the fitted parameters are within tolerance of the initial estimates
double e1 = parameterDrift(sigmaS, fitSigmaS);
double e2 = parameterDrift(proteinDensity, fitProteinDensity);
log(" %s fit: SS = %f. cAIC = %f. %d evaluations", randomModel.getName(), ss, ic1, optimum.getEvaluations());
log(" %s parameters:", randomModel.getName());
log(" Average precision = %s nm (%s%%)", Utils.rounded(fitSigmaS, 4), Utils.rounded(e1, 4));
log(" Average protein density = %s um^-2 (%s%%)", Utils.rounded(fitProteinDensity * 1e6, 4), Utils.rounded(e2, 4));
valid1 = true;
if (fittingTolerance > 0 && (Math.abs(e1) > fittingTolerance || Math.abs(e2) > fittingTolerance)) {
log(" Failed to fit %s within tolerance (%s%%): Average precision = %f nm (%s%%), average protein density = %g um^-2 (%s%%)", randomModel.getName(), Utils.rounded(fittingTolerance, 4), fitSigmaS, Utils.rounded(e1, 4), fitProteinDensity * 1e6, Utils.rounded(e2, 4));
valid1 = false;
}
if (valid1) {
// ---------
// TODO - My data does not comply with this criteria.
// This could be due to the PC-PALM Molecule code limiting the nmPerPixel to fit the images in memory
// thus removing correlations at small r.
// It could also be due to the nature of the random simulations being 3D not 2D membranes
// as per the PC-PALM paper.
// ---------
// Evaluate g(r)protein where:
// g(r)peaks = g(r)protein + g(r)stoch
// g(r)peaks ~ 1 + g(r)stoch
// Verify g(r)protein should be <1.5 for all r>0
double[] gr_stoch = randomModel.value(parameters);
double[] gr_peaks = randomModel.getY();
double[] gr_ = randomModel.getX();
//SummaryStatistics stats = new SummaryStatistics();
for (int i = 0; i < gr_peaks.length; i++) {
// Only evaluate above the fitted average precision
if (gr_[i] < fitSigmaS)
continue;
// Note the RandomModelFunction evaluates g(r)stoch + 1;
double gr_protein_i = gr_peaks[i] - (gr_stoch[i] - 1);
if (gr_protein_i > gr_protein_threshold) {
// Failed fit
log(" Failed to fit %s: g(r)protein %s > %s @ r=%s", randomModel.getName(), Utils.rounded(gr_protein_i, 4), Utils.rounded(gr_protein_threshold, 4), Utils.rounded(gr_[i], 4));
valid1 = false;
}
//stats.addValue(gr_i);
//System.out.printf("g(r)protein @ %f = %f\n", gr[0][i], gr_protein_i);
}
}
addResult(randomModel.getName(), resultColour, valid1, fitSigmaS, fitProteinDensity, 0, 0, 0, 0, ic1);
return parameters;
}
use of org.apache.commons.math3.util.Precision in project GDSC-SMLM by aherbert.
the class PCPALMFitting method fitClusteredModel.
/**
* Fits the correlation curve with r>0 to the clustered model using the estimated density and precision. Parameters
* must be fit within a tolerance of the starting values.
*
* @param gr
* @param sigmaS
* The estimated precision
* @param proteinDensity
* The estimated protein density
* @return The fitted parameters [precision, density, clusterRadius, clusterDensity]
*/
private double[] fitClusteredModel(double[][] gr, double sigmaS, double proteinDensity, String resultColour) {
final ClusteredModelFunctionGradient function = new ClusteredModelFunctionGradient();
clusteredModel = function;
log("Fitting %s: Estimated precision = %f nm, estimated protein density = %g um^-2", clusteredModel.getName(), sigmaS, proteinDensity * 1e6);
clusteredModel.setLogging(true);
for (int i = offset; i < gr[0].length; i++) {
// Only fit the curve above the estimated resolution (points below it will be subject to error)
if (gr[0][i] > sigmaS * fitAboveEstimatedPrecision)
clusteredModel.addPoint(gr[0][i], gr[1][i]);
}
double[] parameters;
// The model is: sigma, density, range, amplitude
double[] initialSolution = new double[] { sigmaS, proteinDensity, sigmaS * 5, 1 };
int evaluations = 0;
// Constrain the fitting to be close to the estimated precision (sigmaS) and protein density.
// LVM fitting does not support constrained fitting so use a bounded optimiser.
SumOfSquaresModelFunction clusteredModelMulti = new SumOfSquaresModelFunction(clusteredModel);
double[] x = clusteredModelMulti.x;
// Put some bounds around the initial guess. Use the fitting tolerance (in %) if provided.
double limit = (fittingTolerance > 0) ? 1 + fittingTolerance / 100 : 2;
double[] lB = new double[] { initialSolution[0] / limit, initialSolution[1] / limit, 0, 0 };
// The amplitude and range should not extend beyond the limits of the g(r) curve.
double[] uB = new double[] { initialSolution[0] * limit, initialSolution[1] * limit, Maths.max(x), Maths.max(gr[1]) };
log("Fitting %s using a bounded search: %s < precision < %s & %s < density < %s", clusteredModel.getName(), Utils.rounded(lB[0], 4), Utils.rounded(uB[0], 4), Utils.rounded(lB[1] * 1e6, 4), Utils.rounded(uB[1] * 1e6, 4));
PointValuePair constrainedSolution = runBoundedOptimiser(gr, initialSolution, lB, uB, clusteredModelMulti);
if (constrainedSolution == null)
return null;
parameters = constrainedSolution.getPointRef();
evaluations = boundedEvaluations;
// Refit using a LVM
if (useLSE) {
log("Re-fitting %s using a gradient optimisation", clusteredModel.getName());
LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
Optimum lvmSolution;
try {
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(parameters).target(function.getY()).weight(new DiagonalMatrix(function.getWeights())).model(function, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return function.jacobian(point);
}
}).build();
//@formatter:on
lvmSolution = optimizer.optimize(problem);
evaluations += lvmSolution.getEvaluations();
double ss = lvmSolution.getResiduals().dotProduct(lvmSolution.getResiduals());
if (ss < constrainedSolution.getValue()) {
log("Re-fitting %s improved the SS from %s to %s (-%s%%)", clusteredModel.getName(), Utils.rounded(constrainedSolution.getValue(), 4), Utils.rounded(ss, 4), Utils.rounded(100 * (constrainedSolution.getValue() - ss) / constrainedSolution.getValue(), 4));
parameters = lvmSolution.getPoint().toArray();
}
} catch (TooManyIterationsException e) {
log("Failed to re-fit %s: Too many iterations (%s)", clusteredModel.getName(), e.getMessage());
} catch (ConvergenceException e) {
log("Failed to re-fit %s: %s", clusteredModel.getName(), e.getMessage());
}
}
clusteredModel.setLogging(false);
// Ensure the width is positive
parameters[0] = Math.abs(parameters[0]);
//parameters[2] = Math.abs(parameters[2]);
double ss = 0;
double[] obs = clusteredModel.getY();
double[] exp = clusteredModel.value(parameters);
for (int i = 0; i < obs.length; i++) ss += (obs[i] - exp[i]) * (obs[i] - exp[i]);
ic2 = Maths.getAkaikeInformationCriterionFromResiduals(ss, clusteredModel.size(), parameters.length);
final double fitSigmaS = parameters[0];
final double fitProteinDensity = parameters[1];
//The radius of the cluster domain
final double domainRadius = parameters[2];
//The density of the cluster domain
final double domainDensity = parameters[3];
// This is from the PC-PALM paper. However that paper fits the g(r)protein exponential convolved in 2D
// with the g(r)PSF. In this method we have just fit the exponential
final double nCluster = 2 * domainDensity * Math.PI * domainRadius * domainRadius * fitProteinDensity;
double e1 = parameterDrift(sigmaS, fitSigmaS);
double e2 = parameterDrift(proteinDensity, fitProteinDensity);
log(" %s fit: SS = %f. cAIC = %f. %d evaluations", clusteredModel.getName(), ss, ic2, evaluations);
log(" %s parameters:", clusteredModel.getName());
log(" Average precision = %s nm (%s%%)", Utils.rounded(fitSigmaS, 4), Utils.rounded(e1, 4));
log(" Average protein density = %s um^-2 (%s%%)", Utils.rounded(fitProteinDensity * 1e6, 4), Utils.rounded(e2, 4));
log(" Domain radius = %s nm", Utils.rounded(domainRadius, 4));
log(" Domain density = %s", Utils.rounded(domainDensity, 4));
log(" nCluster = %s", Utils.rounded(nCluster, 4));
// Check the fitted parameters are within tolerance of the initial estimates
valid2 = true;
if (fittingTolerance > 0 && (Math.abs(e1) > fittingTolerance || Math.abs(e2) > fittingTolerance)) {
log(" Failed to fit %s within tolerance (%s%%): Average precision = %f nm (%s%%), average protein density = %g um^-2 (%s%%)", clusteredModel.getName(), Utils.rounded(fittingTolerance, 4), fitSigmaS, Utils.rounded(e1, 4), fitProteinDensity * 1e6, Utils.rounded(e2, 4));
valid2 = false;
}
// Check extra parameters. Domain radius should be higher than the precision. Density should be positive
if (domainRadius < fitSigmaS) {
log(" Failed to fit %s: Domain radius is smaller than the average precision (%s < %s)", clusteredModel.getName(), Utils.rounded(domainRadius, 4), Utils.rounded(fitSigmaS, 4));
valid2 = false;
}
if (domainDensity < 0) {
log(" Failed to fit %s: Domain density is negative (%s)", clusteredModel.getName(), Utils.rounded(domainDensity, 4));
valid2 = false;
}
if (ic2 > ic1) {
log(" Failed to fit %s - Information Criterion has increased %s%%", clusteredModel.getName(), Utils.rounded((100 * (ic2 - ic1) / ic1), 4));
valid2 = false;
}
addResult(clusteredModel.getName(), resultColour, valid2, fitSigmaS, fitProteinDensity, domainRadius, domainDensity, nCluster, 0, ic2);
return parameters;
}
Aggregations