use of gdsc.core.utils.Statistics in project GDSC-SMLM by aherbert.
the class Gaussian2DFunctionTest method functionComputesTargetGradient.
private void functionComputesTargetGradient(int targetParameter) {
int gradientIndex = findGradientIndex(f1, targetParameter);
double[] dyda = new double[f1.gradientIndices().length];
double[] dyda2 = new double[dyda.length];
double[] a;
Gaussian2DFunction f1a = GaussianFunctionFactory.create2D(1, maxx, maxy, flags, zModel);
Gaussian2DFunction f1b = GaussianFunctionFactory.create2D(1, maxx, maxy, flags, zModel);
Statistics s = new Statistics();
for (double background : testbackground) // Peak 1
for (double amplitude1 : testamplitude1) for (double shape1 : testshape1) for (double cx1 : testcx1) for (double cy1 : testcy1) for (double[] w1 : testw1) {
a = createParameters(background, amplitude1, shape1, cx1, cy1, w1[0], w1[1]);
f1.initialise(a);
// Numerically solve gradient.
// Calculate the step size h to be an exact numerical representation
final double xx = a[targetParameter];
// Get h to minimise roundoff error
double h = Precision.representableDelta(xx, h_);
// Evaluate at (x+h) and (x-h)
a = createParameters(background, amplitude1, shape1, cx1, cy1, w1[0], w1[1]);
a[targetParameter] = xx + h;
f1a.initialise(a);
a = createParameters(background, amplitude1, shape1, cx1, cy1, w1[0], w1[1]);
a[targetParameter] = xx - h;
f1b.initialise(a);
for (int x : testx) for (int y : testy) {
int i = y * maxx + x;
f1.eval(i, dyda);
double value2 = f1a.eval(i, dyda2);
double value3 = f1b.eval(i, dyda2);
double gradient = (value2 - value3) / (2 * h);
double error = DoubleEquality.relativeError(gradient, dyda2[gradientIndex]);
s.add(error);
Assert.assertTrue(gradient + " sign != " + dyda2[gradientIndex], (gradient * dyda2[gradientIndex]) >= 0);
//System.out.printf("[%d,%d] %f == [%d] %f? (%g)\n", x, y, gradient,
// gradientIndex, dyda2[gradientIndex], error);
//System.out.printf("[%d,%d] %f == [%d] %f?\n", x, y, gradient, gradientIndex, dyda[gradientIndex]);
Assert.assertTrue(gradient + " != " + dyda[gradientIndex], eq.almostEqualRelativeOrAbsolute(gradient, dyda[gradientIndex]));
}
}
System.out.printf("functionComputesTargetGradient %s %s (error %s +/- %s)\n", f1.getClass().getSimpleName(), f1.getName(targetParameter), Utils.rounded(s.getMean()), Utils.rounded(s.getStandardDeviation()));
}
use of gdsc.core.utils.Statistics in project GDSC-SMLM by aherbert.
the class DiffusionRateTest method run.
/*
* (non-Javadoc)
*
* @see ij.plugin.PlugIn#run(java.lang.String)
*/
public void run(String arg) {
SMLMUsageTracker.recordPlugin(this.getClass(), arg);
if (IJ.controlKeyDown()) {
simpleTest();
return;
}
extraOptions = Utils.isExtraOptions();
if (!showDialog())
return;
lastSimulatedDataset[0] = lastSimulatedDataset[1] = "";
lastSimulatedPrecision = 0;
final int totalSteps = (int) Math.ceil(settings.seconds * settings.stepsPerSecond);
conversionFactor = 1000000.0 / (settings.pixelPitch * settings.pixelPitch);
// Diffusion rate is um^2/sec. Convert to pixels per simulation frame.
final double diffusionRateInPixelsPerSecond = settings.diffusionRate * conversionFactor;
final double diffusionRateInPixelsPerStep = diffusionRateInPixelsPerSecond / settings.stepsPerSecond;
final double precisionInPixels = myPrecision / settings.pixelPitch;
final boolean addError = myPrecision != 0;
Utils.log(TITLE + " : D = %s um^2/sec, Precision = %s nm", Utils.rounded(settings.diffusionRate, 4), Utils.rounded(myPrecision, 4));
Utils.log("Mean-displacement per dimension = %s nm/sec", Utils.rounded(1e3 * ImageModel.getRandomMoveDistance(settings.diffusionRate), 4));
if (extraOptions)
Utils.log("Step size = %s, precision = %s", Utils.rounded(ImageModel.getRandomMoveDistance(diffusionRateInPixelsPerStep)), Utils.rounded(precisionInPixels));
// Convert diffusion co-efficient into the standard deviation for the random walk
final double diffusionSigma = (settings.getDiffusionType() == DiffusionType.LINEAR_WALK) ? // Q. What should this be? At the moment just do 1D diffusion on a random vector
ImageModel.getRandomMoveDistance(diffusionRateInPixelsPerStep) : ImageModel.getRandomMoveDistance(diffusionRateInPixelsPerStep);
Utils.log("Simulation step-size = %s nm", Utils.rounded(settings.pixelPitch * diffusionSigma, 4));
// Move the molecules and get the diffusion rate
IJ.showStatus("Simulating ...");
final long start = System.nanoTime();
final long seed = System.currentTimeMillis() + System.identityHashCode(this);
RandomGenerator[] random = new RandomGenerator[3];
RandomGenerator[] random2 = new RandomGenerator[3];
for (int i = 0; i < 3; i++) {
random[i] = new Well19937c(seed + i * 12436);
random2[i] = new Well19937c(seed + i * 678678 + 3);
}
Statistics[] stats2D = new Statistics[totalSteps];
Statistics[] stats3D = new Statistics[totalSteps];
StoredDataStatistics jumpDistances2D = new StoredDataStatistics(totalSteps);
StoredDataStatistics jumpDistances3D = new StoredDataStatistics(totalSteps);
for (int j = 0; j < totalSteps; j++) {
stats2D[j] = new Statistics();
stats3D[j] = new Statistics();
}
SphericalDistribution dist = new SphericalDistribution(settings.confinementRadius / settings.pixelPitch);
Statistics asymptote = new Statistics();
// Save results to memory
MemoryPeakResults results = new MemoryPeakResults(totalSteps);
Calibration cal = new Calibration(settings.pixelPitch, 1, 1000.0 / settings.stepsPerSecond);
results.setCalibration(cal);
results.setName(TITLE);
int peak = 0;
// Store raw coordinates
ArrayList<Point> points = new ArrayList<Point>(totalSteps);
StoredData totalJumpDistances1D = new StoredData(settings.particles);
StoredData totalJumpDistances2D = new StoredData(settings.particles);
StoredData totalJumpDistances3D = new StoredData(settings.particles);
for (int i = 0; i < settings.particles; i++) {
if (i % 16 == 0) {
IJ.showProgress(i, settings.particles);
if (Utils.isInterrupted())
return;
}
// Increment the frame so that tracing analysis can distinguish traces
peak++;
double[] origin = new double[3];
final int id = i + 1;
MoleculeModel m = new MoleculeModel(id, origin.clone());
if (addError)
origin = addError(origin, precisionInPixels, random);
if (useConfinement) {
// Note: When using confinement the average displacement should asymptote
// at the average distance of a point from the centre of a ball. This is 3r/4.
// See: http://answers.yahoo.com/question/index?qid=20090131162630AAMTUfM
// The equivalent in 2D is 2r/3. However although we are plotting 2D distance
// this is a projection of the 3D position onto the plane and so the particles
// will not be evenly spread (there will be clustering at centre caused by the
// poles)
final double[] axis = (settings.getDiffusionType() == DiffusionType.LINEAR_WALK) ? nextVector() : null;
for (int j = 0; j < totalSteps; j++) {
double[] xyz = m.getCoordinates();
double[] originalXyz = xyz.clone();
for (int n = confinementAttempts; n-- > 0; ) {
if (settings.getDiffusionType() == DiffusionType.GRID_WALK)
m.walk(diffusionSigma, random);
else if (settings.getDiffusionType() == DiffusionType.LINEAR_WALK)
m.slide(diffusionSigma, axis, random[0]);
else
m.move(diffusionSigma, random);
if (!dist.isWithin(m.getCoordinates())) {
// Reset position
for (int k = 0; k < 3; k++) xyz[k] = originalXyz[k];
} else {
// The move was allowed
break;
}
}
points.add(new Point(id, xyz));
if (addError)
xyz = addError(xyz, precisionInPixels, random2);
peak = record(xyz, id, peak, stats2D[j], stats3D[j], jumpDistances2D, jumpDistances3D, origin, results);
}
asymptote.add(distance(m.getCoordinates()));
} else {
if (settings.getDiffusionType() == DiffusionType.GRID_WALK) {
for (int j = 0; j < totalSteps; j++) {
m.walk(diffusionSigma, random);
double[] xyz = m.getCoordinates();
points.add(new Point(id, xyz));
if (addError)
xyz = addError(xyz, precisionInPixels, random2);
peak = record(xyz, id, peak, stats2D[j], stats3D[j], jumpDistances2D, jumpDistances3D, origin, results);
}
} else if (settings.getDiffusionType() == DiffusionType.LINEAR_WALK) {
final double[] axis = nextVector();
for (int j = 0; j < totalSteps; j++) {
m.slide(diffusionSigma, axis, random[0]);
double[] xyz = m.getCoordinates();
points.add(new Point(id, xyz));
if (addError)
xyz = addError(xyz, precisionInPixels, random2);
peak = record(xyz, id, peak, stats2D[j], stats3D[j], jumpDistances2D, jumpDistances3D, origin, results);
}
} else {
for (int j = 0; j < totalSteps; j++) {
m.move(diffusionSigma, random);
double[] xyz = m.getCoordinates();
points.add(new Point(id, xyz));
if (addError)
xyz = addError(xyz, precisionInPixels, random2);
peak = record(xyz, id, peak, stats2D[j], stats3D[j], jumpDistances2D, jumpDistances3D, origin, results);
}
}
}
// Debug: record all the particles so they can be analysed
// System.out.printf("%f %f %f\n", m.getX(), m.getY(), m.getZ());
final double[] xyz = m.getCoordinates();
double d2 = 0;
totalJumpDistances1D.add(d2 = xyz[0] * xyz[0]);
totalJumpDistances2D.add(d2 += xyz[1] * xyz[1]);
totalJumpDistances3D.add(d2 += xyz[2] * xyz[2]);
}
final double time = (System.nanoTime() - start) / 1000000.0;
IJ.showProgress(1);
MemoryPeakResults.addResults(results);
lastSimulatedDataset[0] = results.getName();
lastSimulatedPrecision = myPrecision;
// Convert pixels^2/step to um^2/sec
final double msd2D = (jumpDistances2D.getMean() / conversionFactor) / (results.getCalibration().getExposureTime() / 1000);
final double msd3D = (jumpDistances3D.getMean() / conversionFactor) / (results.getCalibration().getExposureTime() / 1000);
Utils.log("Raw data D=%s um^2/s, Precision = %s nm, N=%d, step=%s s, mean2D=%s um^2, MSD 2D = %s um^2/s, mean3D=%s um^2, MSD 3D = %s um^2/s", Utils.rounded(settings.diffusionRate), Utils.rounded(myPrecision), jumpDistances2D.getN(), Utils.rounded(results.getCalibration().getExposureTime() / 1000), Utils.rounded(jumpDistances2D.getMean() / conversionFactor), Utils.rounded(msd2D), Utils.rounded(jumpDistances3D.getMean() / conversionFactor), Utils.rounded(msd3D));
aggregateIntoFrames(points, addError, precisionInPixels, random2);
IJ.showStatus("Analysing results ...");
if (showDiffusionExample) {
showExample(totalSteps, diffusionSigma, random);
}
// Plot a graph of mean squared distance
double[] xValues = new double[stats2D.length];
double[] yValues2D = new double[stats2D.length];
double[] yValues3D = new double[stats3D.length];
double[] upper2D = new double[stats2D.length];
double[] lower2D = new double[stats2D.length];
double[] upper3D = new double[stats3D.length];
double[] lower3D = new double[stats3D.length];
SimpleRegression r2D = new SimpleRegression(false);
SimpleRegression r3D = new SimpleRegression(false);
final int firstN = (useConfinement) ? fitN : totalSteps;
for (int j = 0; j < totalSteps; j++) {
// Convert steps to seconds
xValues[j] = (double) (j + 1) / settings.stepsPerSecond;
// Convert values in pixels^2 to um^2
final double mean2D = stats2D[j].getMean() / conversionFactor;
final double mean3D = stats3D[j].getMean() / conversionFactor;
final double sd2D = stats2D[j].getStandardDeviation() / conversionFactor;
final double sd3D = stats3D[j].getStandardDeviation() / conversionFactor;
yValues2D[j] = mean2D;
yValues3D[j] = mean3D;
upper2D[j] = mean2D + sd2D;
lower2D[j] = mean2D - sd2D;
upper3D[j] = mean3D + sd3D;
lower3D[j] = mean3D - sd3D;
if (j < firstN) {
r2D.addData(xValues[j], yValues2D[j]);
r3D.addData(xValues[j], yValues3D[j]);
}
}
// TODO - Fit using the equation for 2D confined diffusion:
// MSD = 4s^2 + R^2 (1 - 0.99e^(-1.84^2 Dt / R^2)
// s = localisation precision
// R = confinement radius
// D = 2D diffusion coefficient
// t = time
final PolynomialFunction fitted2D, fitted3D;
if (r2D.getN() > 0) {
// Do linear regression to get diffusion rate
final double[] best2D = new double[] { r2D.getIntercept(), r2D.getSlope() };
fitted2D = new PolynomialFunction(best2D);
final double[] best3D = new double[] { r3D.getIntercept(), r3D.getSlope() };
fitted3D = new PolynomialFunction(best3D);
// For 2D diffusion: d^2 = 4D
// where: d^2 = mean-square displacement
double D = best2D[1] / 4.0;
String msg = "2D Diffusion rate = " + Utils.rounded(D, 4) + " um^2 / sec (" + Utils.timeToString(time) + ")";
IJ.showStatus(msg);
Utils.log(msg);
D = best3D[1] / 6.0;
Utils.log("3D Diffusion rate = " + Utils.rounded(D, 4) + " um^2 / sec (" + Utils.timeToString(time) + ")");
} else {
fitted2D = fitted3D = null;
}
// Create plots
plotMSD(totalSteps, xValues, yValues2D, lower2D, upper2D, fitted2D, 2);
plotMSD(totalSteps, xValues, yValues3D, lower3D, upper3D, fitted3D, 3);
plotJumpDistances(TITLE, jumpDistances2D, 2, 1);
plotJumpDistances(TITLE, jumpDistances3D, 3, 1);
if (idCount > 0)
new WindowOrganiser().tileWindows(idList);
if (useConfinement)
Utils.log("3D asymptote distance = %s nm (expected %.2f)", Utils.rounded(asymptote.getMean() * settings.pixelPitch, 4), 3 * settings.confinementRadius / 4);
}
use of gdsc.core.utils.Statistics in project GDSC-SMLM by aherbert.
the class DataEstimator method getEstimate.
private void getEstimate() {
if (estimate == null) {
estimate = new float[5];
if (h == null) {
h = FloatHistogram.buildHistogram(data.clone(), true);
h = h.compact(histogramSize);
}
// Threshold the data
final float t = estimate[ESTIMATE_THRESHOLD] = h.getAutoThreshold(thresholdMethod);
// Get stats below the threshold
Statistics stats = new Statistics();
for (int i = h.minBin; i <= h.maxBin; i++) {
if (h.getValue(i) >= t)
break;
stats.add(h.h[i], h.getValue(i));
}
// Check if background region is large enough
estimate[ESTIMATE_BACKGROUND_SIZE] = stats.getN();
if (stats.getN() > fraction * data.length) {
// Background region is large enough
estimate[ESTIMATE_LARGE_ENOUGH] = 1;
} else {
// Recompute with all the data
stats = new Statistics(data);
}
estimate[ESTIMATE_BACKGROUND] = (float) stats.getMean();
estimate[ESTIMATE_NOISE] = (float) stats.getStandardDeviation();
}
}
use of gdsc.core.utils.Statistics in project GDSC-SMLM by aherbert.
the class TraceDiffusion method run.
/*
* (non-Javadoc)
*
* @see ij.plugin.PlugIn#run(java.lang.String)
*/
public void run(String arg) {
SMLMUsageTracker.recordPlugin(this.getClass(), arg);
jumpDistanceParameters = null;
extraOptions = Utils.isExtraOptions();
if (MemoryPeakResults.isMemoryEmpty()) {
IJ.error(TITLE, "No localisations in memory");
return;
}
ArrayList<MemoryPeakResults> allResults = new ArrayList<MemoryPeakResults>();
// Option to pick multiple input datasets together using a list box.
if ("multi".equals(arg)) {
if (!showMultiDialog(allResults))
return;
}
// This shows the dialog for selecting trace options
if (!showTraceDialog(allResults))
return;
if (// Sense check
allResults.isEmpty())
return;
Utils.log(TITLE + "...");
// This optionally collects additional datasets then gets the traces:
// - Trace each single dataset (and store in memory)
// - Combine trace results held in memory
Trace[] traces = getTraces(allResults);
// This still allows a zero entry in the results table.
if (traces.length > 0)
if (!showDialog())
return;
int count = traces.length;
double[] fitMSDResult = null;
int n = 0;
double[][] jdParams = null;
if (count > 0) {
calculatePrecision(traces, allResults.size() > 1);
//--- MSD Analysis ---
// Conversion constants
final double px2ToUm2 = results.getCalibration().getNmPerPixel() * results.getCalibration().getNmPerPixel() / 1e6;
final double px2ToUm2PerSecond = px2ToUm2 / exposureTime;
// Get the maximum trace length
int length = settings.minimumTraceLength;
if (!settings.truncate) {
for (Trace trace : traces) {
if (length < trace.size())
length = trace.size();
}
}
// Get the localisation error (4s^2) in um^2
final double error = (settings.precisionCorrection) ? 4 * precision * precision / 1e6 : 0;
// Pre-calculate MSD correction factors. This accounts for the fact that the distance moved
// in the start/end frames is reduced due to the averaging of the particle location over the
// entire frame into a single point. The true MSD may be restored by applying a factor.
// Note: These are used for the calculation of the diffusion coefficients per molecule and
// the MSD passed to the Jump Distance analysis. However the error is not included in the
// jump distance analysis so will be subtracted from the fitted D coefficients later.
final double[] factors;
if (settings.msdCorrection) {
factors = new double[length];
for (int t = 1; t < length; t++) factors[t] = JumpDistanceAnalysis.getConversionfactor(t);
} else {
factors = Utils.newArray(length, 0.0, 1.0);
}
// Extract the mean-squared distance statistics
Statistics[] stats = new Statistics[length];
for (int i = 0; i < stats.length; i++) stats[i] = new Statistics();
ArrayList<double[]> distances = (saveTraceDistances || displayTraceLength) ? new ArrayList<double[]>(traces.length) : null;
// Store all the jump distances at the specified interval
StoredDataStatistics jumpDistances = new StoredDataStatistics();
final int jumpDistanceInterval = settings.jumpDistance;
// Compute squared distances
StoredDataStatistics msdPerMoleculeAllVsAll = new StoredDataStatistics();
StoredDataStatistics msdPerMoleculeAdjacent = new StoredDataStatistics();
for (Trace trace : traces) {
ArrayList<PeakResult> results = trace.getPoints();
// Sum the MSD and the time
final int traceLength = (settings.truncate) ? settings.minimumTraceLength : trace.size();
// Get the mean for each time separation
double[] sumDistance = new double[traceLength + 1];
double[] sumTime = new double[sumDistance.length];
// Do the distances to the origin (saving if necessary)
{
final float x = results.get(0).getXPosition();
final float y = results.get(0).getYPosition();
if (distances != null) {
double[] msd = new double[traceLength - 1];
for (int j = 1; j < traceLength; j++) {
final int t = j;
final double d = distance2(x, y, results.get(j));
msd[j - 1] = px2ToUm2 * d;
if (t == jumpDistanceInterval)
jumpDistances.add(msd[j - 1]);
sumDistance[t] += d;
sumTime[t] += t;
}
distances.add(msd);
} else {
for (int j = 1; j < traceLength; j++) {
final int t = j;
final double d = distance2(x, y, results.get(j));
if (t == jumpDistanceInterval)
jumpDistances.add(px2ToUm2 * d);
sumDistance[t] += d;
sumTime[t] += t;
}
}
}
if (settings.internalDistances) {
// Do the internal distances
for (int i = 1; i < traceLength; i++) {
final float x = results.get(i).getXPosition();
final float y = results.get(i).getYPosition();
for (int j = i + 1; j < traceLength; j++) {
final int t = j - i;
final double d = distance2(x, y, results.get(j));
if (t == jumpDistanceInterval)
jumpDistances.add(px2ToUm2 * d);
sumDistance[t] += d;
sumTime[t] += t;
}
}
// Add the average distance per time separation to the population
for (int t = 1; t < traceLength; t++) {
// Note: (traceLength - t) == count
stats[t].add(sumDistance[t] / (traceLength - t));
}
} else {
// Add the distance per time separation to the population
for (int t = 1; t < traceLength; t++) {
stats[t].add(sumDistance[t]);
}
}
// Fix this for the precision and MSD adjustment.
// It may be necessary to:
// - sum the raw distances for each time interval (this is sumDistance[t])
// - subtract the precision error
// - apply correction factor for the n-frames to get actual MSD
// - sum the actual MSD
double sumD = 0, sumD_adjacent = Math.max(0, sumDistance[1] - error) * factors[1];
double sumT = 0, sumT_adjacent = sumTime[1];
for (int t = 1; t < traceLength; t++) {
sumD += Math.max(0, sumDistance[t] - error) * factors[t];
sumT += sumTime[t];
}
// Calculate the average displacement for the trace (do not simply use the largest
// time separation since this will miss moving molecules that end up at the origin)
msdPerMoleculeAllVsAll.add(px2ToUm2PerSecond * sumD / sumT);
msdPerMoleculeAdjacent.add(px2ToUm2PerSecond * sumD_adjacent / sumT_adjacent);
}
StoredDataStatistics dPerMoleculeAllVsAll = null;
StoredDataStatistics dPerMoleculeAdjacent = null;
if (saveTraceDistances || (settings.showHistograms && displayDHistogram)) {
dPerMoleculeAllVsAll = calculateDiffusionCoefficient(msdPerMoleculeAllVsAll);
dPerMoleculeAdjacent = calculateDiffusionCoefficient(msdPerMoleculeAdjacent);
}
if (saveTraceDistances) {
saveTraceDistances(traces.length, distances, msdPerMoleculeAllVsAll, msdPerMoleculeAdjacent, dPerMoleculeAllVsAll, dPerMoleculeAdjacent);
}
if (displayTraceLength) {
StoredDataStatistics lengths = calculateTraceLengths(distances);
showHistogram(lengths, "Trace length (um)");
}
if (displayTraceSize) {
StoredDataStatistics sizes = calculateTraceSizes(traces);
showHistogram(sizes, "Trace size", true);
}
// Plot the per-trace histogram of MSD and D
if (settings.showHistograms) {
if (displayMSDHistogram) {
showHistogram(msdPerMoleculeAllVsAll, "MSD/Molecule (all-vs-all)");
showHistogram(msdPerMoleculeAdjacent, "MSD/Molecule (adjacent)");
}
if (displayDHistogram) {
showHistogram(dPerMoleculeAllVsAll, "D/Molecule (all-vs-all)");
showHistogram(dPerMoleculeAdjacent, "D/Molecule (adjacent)");
}
}
// Calculate the mean squared distance (MSD)
double[] x = new double[stats.length];
double[] y = new double[x.length];
double[] sd = new double[x.length];
// Intercept is the 4s^2 (in um^2)
y[0] = 4 * precision * precision / 1e6;
for (int i = 1; i < stats.length; i++) {
x[i] = i * exposureTime;
y[i] = stats[i].getMean() * px2ToUm2;
//sd[i] = stats[i].getStandardDeviation() * px2ToUm2;
sd[i] = stats[i].getStandardError() * px2ToUm2;
}
String title = TITLE + " MSD";
Plot2 plot = plotMSD(x, y, sd, title);
// Fit the MSD using a linear fit
fitMSDResult = fitMSD(x, y, title, plot);
// Jump Distance analysis
if (saveRawData)
saveStatistics(jumpDistances, "Jump Distance", "Distance (um^2)", false);
// Calculate the cumulative jump-distance histogram
double[][] jdHistogram = JumpDistanceAnalysis.cumulativeHistogram(jumpDistances.getValues());
// Always show the jump distance histogram
jdTitle = TITLE + " Jump Distance";
jdPlot = new Plot2(jdTitle, "Distance (um^2)", "Cumulative Probability", jdHistogram[0], jdHistogram[1]);
display(jdTitle, jdPlot);
// Fit Jump Distance cumulative probability
n = jumpDistances.getN();
jumpDistanceParameters = jdParams = fitJumpDistance(jumpDistances, jdHistogram);
}
summarise(traces, fitMSDResult, n, jdParams);
}
use of gdsc.core.utils.Statistics in project GDSC-SMLM by aherbert.
the class CMOSAnalysis method computeError.
private void computeError(int slice, ImageStack simulationStack) {
String label = simulationStack.getSliceLabel(slice);
float[] e = (float[]) simulationStack.getPixels(slice);
float[] o = (float[]) measuredStack.getPixels(slice);
// Get the mean error
Statistics s = new Statistics();
for (int i = e.length; i-- > 0; ) s.add(o[i] - e[i]);
StringBuilder result = new StringBuilder("Error ").append(label);
result.append(" = ").append(Utils.rounded(s.getMean()));
result.append(" +/- ").append(Utils.rounded(s.getStandardDeviation()));
// Do statistical tests
double[] x = Utils.toDouble(e), y = Utils.toDouble(o);
PearsonsCorrelation c = new PearsonsCorrelation();
result.append(" : R=").append(Utils.rounded(c.correlation(x, y)));
// Mann-Whitney U is valid for any distribution, e.g. variance
MannWhitneyUTest test = new MannWhitneyUTest();
double p = test.mannWhitneyUTest(x, y);
result.append(" : Mann-Whitney U p=").append(Utils.rounded(p)).append(' ').append(((p < 0.05) ? "reject" : "accept"));
if (slice != 2) {
// T-Test is valid for approximately Normal distributions, e.g. offset and gain
p = TestUtils.tTest(x, y);
result.append(" : T-Test p=").append(Utils.rounded(p)).append(' ').append(((p < 0.05) ? "reject" : "accept"));
p = TestUtils.pairedTTest(x, y);
result.append(" : Paired T-Test p=").append(Utils.rounded(p)).append(' ').append(((p < 0.05) ? "reject" : "accept"));
}
Utils.log(result.toString());
}
Aggregations