use of org.apache.commons.math3.stat.regression.SimpleRegression in project GDSC-SMLM by aherbert.
the class DiffusionRateTest method run.
/*
* (non-Javadoc)
*
* @see ij.plugin.PlugIn#run(java.lang.String)
*/
public void run(String arg) {
SMLMUsageTracker.recordPlugin(this.getClass(), arg);
if (IJ.controlKeyDown()) {
simpleTest();
return;
}
extraOptions = Utils.isExtraOptions();
if (!showDialog())
return;
lastSimulatedDataset[0] = lastSimulatedDataset[1] = "";
lastSimulatedPrecision = 0;
final int totalSteps = (int) Math.ceil(settings.seconds * settings.stepsPerSecond);
conversionFactor = 1000000.0 / (settings.pixelPitch * settings.pixelPitch);
// Diffusion rate is um^2/sec. Convert to pixels per simulation frame.
final double diffusionRateInPixelsPerSecond = settings.diffusionRate * conversionFactor;
final double diffusionRateInPixelsPerStep = diffusionRateInPixelsPerSecond / settings.stepsPerSecond;
final double precisionInPixels = myPrecision / settings.pixelPitch;
final boolean addError = myPrecision != 0;
Utils.log(TITLE + " : D = %s um^2/sec, Precision = %s nm", Utils.rounded(settings.diffusionRate, 4), Utils.rounded(myPrecision, 4));
Utils.log("Mean-displacement per dimension = %s nm/sec", Utils.rounded(1e3 * ImageModel.getRandomMoveDistance(settings.diffusionRate), 4));
if (extraOptions)
Utils.log("Step size = %s, precision = %s", Utils.rounded(ImageModel.getRandomMoveDistance(diffusionRateInPixelsPerStep)), Utils.rounded(precisionInPixels));
// Convert diffusion co-efficient into the standard deviation for the random walk
final double diffusionSigma = (settings.getDiffusionType() == DiffusionType.LINEAR_WALK) ? // Q. What should this be? At the moment just do 1D diffusion on a random vector
ImageModel.getRandomMoveDistance(diffusionRateInPixelsPerStep) : ImageModel.getRandomMoveDistance(diffusionRateInPixelsPerStep);
Utils.log("Simulation step-size = %s nm", Utils.rounded(settings.pixelPitch * diffusionSigma, 4));
// Move the molecules and get the diffusion rate
IJ.showStatus("Simulating ...");
final long start = System.nanoTime();
final long seed = System.currentTimeMillis() + System.identityHashCode(this);
RandomGenerator[] random = new RandomGenerator[3];
RandomGenerator[] random2 = new RandomGenerator[3];
for (int i = 0; i < 3; i++) {
random[i] = new Well19937c(seed + i * 12436);
random2[i] = new Well19937c(seed + i * 678678 + 3);
}
Statistics[] stats2D = new Statistics[totalSteps];
Statistics[] stats3D = new Statistics[totalSteps];
StoredDataStatistics jumpDistances2D = new StoredDataStatistics(totalSteps);
StoredDataStatistics jumpDistances3D = new StoredDataStatistics(totalSteps);
for (int j = 0; j < totalSteps; j++) {
stats2D[j] = new Statistics();
stats3D[j] = new Statistics();
}
SphericalDistribution dist = new SphericalDistribution(settings.confinementRadius / settings.pixelPitch);
Statistics asymptote = new Statistics();
// Save results to memory
MemoryPeakResults results = new MemoryPeakResults(totalSteps);
Calibration cal = new Calibration(settings.pixelPitch, 1, 1000.0 / settings.stepsPerSecond);
results.setCalibration(cal);
results.setName(TITLE);
int peak = 0;
// Store raw coordinates
ArrayList<Point> points = new ArrayList<Point>(totalSteps);
StoredData totalJumpDistances1D = new StoredData(settings.particles);
StoredData totalJumpDistances2D = new StoredData(settings.particles);
StoredData totalJumpDistances3D = new StoredData(settings.particles);
for (int i = 0; i < settings.particles; i++) {
if (i % 16 == 0) {
IJ.showProgress(i, settings.particles);
if (Utils.isInterrupted())
return;
}
// Increment the frame so that tracing analysis can distinguish traces
peak++;
double[] origin = new double[3];
final int id = i + 1;
MoleculeModel m = new MoleculeModel(id, origin.clone());
if (addError)
origin = addError(origin, precisionInPixels, random);
if (useConfinement) {
// Note: When using confinement the average displacement should asymptote
// at the average distance of a point from the centre of a ball. This is 3r/4.
// See: http://answers.yahoo.com/question/index?qid=20090131162630AAMTUfM
// The equivalent in 2D is 2r/3. However although we are plotting 2D distance
// this is a projection of the 3D position onto the plane and so the particles
// will not be evenly spread (there will be clustering at centre caused by the
// poles)
final double[] axis = (settings.getDiffusionType() == DiffusionType.LINEAR_WALK) ? nextVector() : null;
for (int j = 0; j < totalSteps; j++) {
double[] xyz = m.getCoordinates();
double[] originalXyz = xyz.clone();
for (int n = confinementAttempts; n-- > 0; ) {
if (settings.getDiffusionType() == DiffusionType.GRID_WALK)
m.walk(diffusionSigma, random);
else if (settings.getDiffusionType() == DiffusionType.LINEAR_WALK)
m.slide(diffusionSigma, axis, random[0]);
else
m.move(diffusionSigma, random);
if (!dist.isWithin(m.getCoordinates())) {
// Reset position
for (int k = 0; k < 3; k++) xyz[k] = originalXyz[k];
} else {
// The move was allowed
break;
}
}
points.add(new Point(id, xyz));
if (addError)
xyz = addError(xyz, precisionInPixels, random2);
peak = record(xyz, id, peak, stats2D[j], stats3D[j], jumpDistances2D, jumpDistances3D, origin, results);
}
asymptote.add(distance(m.getCoordinates()));
} else {
if (settings.getDiffusionType() == DiffusionType.GRID_WALK) {
for (int j = 0; j < totalSteps; j++) {
m.walk(diffusionSigma, random);
double[] xyz = m.getCoordinates();
points.add(new Point(id, xyz));
if (addError)
xyz = addError(xyz, precisionInPixels, random2);
peak = record(xyz, id, peak, stats2D[j], stats3D[j], jumpDistances2D, jumpDistances3D, origin, results);
}
} else if (settings.getDiffusionType() == DiffusionType.LINEAR_WALK) {
final double[] axis = nextVector();
for (int j = 0; j < totalSteps; j++) {
m.slide(diffusionSigma, axis, random[0]);
double[] xyz = m.getCoordinates();
points.add(new Point(id, xyz));
if (addError)
xyz = addError(xyz, precisionInPixels, random2);
peak = record(xyz, id, peak, stats2D[j], stats3D[j], jumpDistances2D, jumpDistances3D, origin, results);
}
} else {
for (int j = 0; j < totalSteps; j++) {
m.move(diffusionSigma, random);
double[] xyz = m.getCoordinates();
points.add(new Point(id, xyz));
if (addError)
xyz = addError(xyz, precisionInPixels, random2);
peak = record(xyz, id, peak, stats2D[j], stats3D[j], jumpDistances2D, jumpDistances3D, origin, results);
}
}
}
// Debug: record all the particles so they can be analysed
// System.out.printf("%f %f %f\n", m.getX(), m.getY(), m.getZ());
final double[] xyz = m.getCoordinates();
double d2 = 0;
totalJumpDistances1D.add(d2 = xyz[0] * xyz[0]);
totalJumpDistances2D.add(d2 += xyz[1] * xyz[1]);
totalJumpDistances3D.add(d2 += xyz[2] * xyz[2]);
}
final double time = (System.nanoTime() - start) / 1000000.0;
IJ.showProgress(1);
MemoryPeakResults.addResults(results);
lastSimulatedDataset[0] = results.getName();
lastSimulatedPrecision = myPrecision;
// Convert pixels^2/step to um^2/sec
final double msd2D = (jumpDistances2D.getMean() / conversionFactor) / (results.getCalibration().getExposureTime() / 1000);
final double msd3D = (jumpDistances3D.getMean() / conversionFactor) / (results.getCalibration().getExposureTime() / 1000);
Utils.log("Raw data D=%s um^2/s, Precision = %s nm, N=%d, step=%s s, mean2D=%s um^2, MSD 2D = %s um^2/s, mean3D=%s um^2, MSD 3D = %s um^2/s", Utils.rounded(settings.diffusionRate), Utils.rounded(myPrecision), jumpDistances2D.getN(), Utils.rounded(results.getCalibration().getExposureTime() / 1000), Utils.rounded(jumpDistances2D.getMean() / conversionFactor), Utils.rounded(msd2D), Utils.rounded(jumpDistances3D.getMean() / conversionFactor), Utils.rounded(msd3D));
aggregateIntoFrames(points, addError, precisionInPixels, random2);
IJ.showStatus("Analysing results ...");
if (showDiffusionExample) {
showExample(totalSteps, diffusionSigma, random);
}
// Plot a graph of mean squared distance
double[] xValues = new double[stats2D.length];
double[] yValues2D = new double[stats2D.length];
double[] yValues3D = new double[stats3D.length];
double[] upper2D = new double[stats2D.length];
double[] lower2D = new double[stats2D.length];
double[] upper3D = new double[stats3D.length];
double[] lower3D = new double[stats3D.length];
SimpleRegression r2D = new SimpleRegression(false);
SimpleRegression r3D = new SimpleRegression(false);
final int firstN = (useConfinement) ? fitN : totalSteps;
for (int j = 0; j < totalSteps; j++) {
// Convert steps to seconds
xValues[j] = (double) (j + 1) / settings.stepsPerSecond;
// Convert values in pixels^2 to um^2
final double mean2D = stats2D[j].getMean() / conversionFactor;
final double mean3D = stats3D[j].getMean() / conversionFactor;
final double sd2D = stats2D[j].getStandardDeviation() / conversionFactor;
final double sd3D = stats3D[j].getStandardDeviation() / conversionFactor;
yValues2D[j] = mean2D;
yValues3D[j] = mean3D;
upper2D[j] = mean2D + sd2D;
lower2D[j] = mean2D - sd2D;
upper3D[j] = mean3D + sd3D;
lower3D[j] = mean3D - sd3D;
if (j < firstN) {
r2D.addData(xValues[j], yValues2D[j]);
r3D.addData(xValues[j], yValues3D[j]);
}
}
// TODO - Fit using the equation for 2D confined diffusion:
// MSD = 4s^2 + R^2 (1 - 0.99e^(-1.84^2 Dt / R^2)
// s = localisation precision
// R = confinement radius
// D = 2D diffusion coefficient
// t = time
final PolynomialFunction fitted2D, fitted3D;
if (r2D.getN() > 0) {
// Do linear regression to get diffusion rate
final double[] best2D = new double[] { r2D.getIntercept(), r2D.getSlope() };
fitted2D = new PolynomialFunction(best2D);
final double[] best3D = new double[] { r3D.getIntercept(), r3D.getSlope() };
fitted3D = new PolynomialFunction(best3D);
// For 2D diffusion: d^2 = 4D
// where: d^2 = mean-square displacement
double D = best2D[1] / 4.0;
String msg = "2D Diffusion rate = " + Utils.rounded(D, 4) + " um^2 / sec (" + Utils.timeToString(time) + ")";
IJ.showStatus(msg);
Utils.log(msg);
D = best3D[1] / 6.0;
Utils.log("3D Diffusion rate = " + Utils.rounded(D, 4) + " um^2 / sec (" + Utils.timeToString(time) + ")");
} else {
fitted2D = fitted3D = null;
}
// Create plots
plotMSD(totalSteps, xValues, yValues2D, lower2D, upper2D, fitted2D, 2);
plotMSD(totalSteps, xValues, yValues3D, lower3D, upper3D, fitted3D, 3);
plotJumpDistances(TITLE, jumpDistances2D, 2, 1);
plotJumpDistances(TITLE, jumpDistances3D, 3, 1);
if (idCount > 0)
new WindowOrganiser().tileWindows(idList);
if (useConfinement)
Utils.log("3D asymptote distance = %s nm (expected %.2f)", Utils.rounded(asymptote.getMean() * settings.pixelPitch, 4), 3 * settings.confinementRadius / 4);
}
use of org.apache.commons.math3.stat.regression.SimpleRegression in project lucene-solr by apache.
the class RegressionEvaluator method evaluate.
public Tuple evaluate(Tuple tuple) throws IOException {
if (subEvaluators.size() != 2) {
throw new IOException("Regress expects 2 columns as parameters");
}
StreamEvaluator colEval1 = subEvaluators.get(0);
StreamEvaluator colEval2 = subEvaluators.get(1);
List<Number> numbers1 = (List<Number>) colEval1.evaluate(tuple);
List<Number> numbers2 = (List<Number>) colEval2.evaluate(tuple);
double[] column1 = new double[numbers1.size()];
double[] column2 = new double[numbers2.size()];
for (int i = 0; i < numbers1.size(); i++) {
column1[i] = numbers1.get(i).doubleValue();
}
for (int i = 0; i < numbers2.size(); i++) {
column2[i] = numbers2.get(i).doubleValue();
}
SimpleRegression regression = new SimpleRegression();
for (int i = 0; i < column1.length; i++) {
regression.addData(column1[i], column2[i]);
}
Map map = new HashMap();
map.put("slope", regression.getSlope());
map.put("intercept", regression.getIntercept());
map.put("R", regression.getR());
map.put("N", regression.getN());
map.put("regressionSumSquares", regression.getRegressionSumSquares());
map.put("slopeConfidenceInterval", regression.getSlopeConfidenceInterval());
map.put("interceptStdErr", regression.getInterceptStdErr());
map.put("totalSumSquares", regression.getTotalSumSquares());
map.put("significance", regression.getSignificance());
map.put("meanSquareError", regression.getMeanSquareError());
return new RegressionTuple(regression, map);
}
use of org.apache.commons.math3.stat.regression.SimpleRegression in project atav by igm-team.
the class CoverageComparison method processExon.
@Override
public void processExon(HashMap<Integer, Integer> sampleCoveredLengthMap, Gene gene, Exon exon) {
try {
SimpleRegression sr = new SimpleRegression(true);
SummaryStatistics lss = new SummaryStatistics();
float caseAvg = 0;
float ctrlAvg = 0;
for (Sample sample : SampleManager.getList()) {
Integer coveredLength = sampleCoveredLengthMap.get(sample.getId());
if (coveredLength != null) {
if (sample.isCase()) {
caseAvg += coveredLength;
} else {
ctrlAvg += coveredLength;
}
} else {
coveredLength = 0;
}
addRegressionData(sr, lss, sample, coveredLength, exon.getLength());
}
caseAvg = MathManager.devide(caseAvg, SampleManager.getCaseNum());
caseAvg = MathManager.devide(caseAvg, exon.getLength());
ctrlAvg = MathManager.devide(ctrlAvg, SampleManager.getCtrlNum());
ctrlAvg = MathManager.devide(ctrlAvg, exon.getLength());
if (CoverageCommand.isMinCoverageFractionValid(caseAvg) && CoverageCommand.isMinCoverageFractionValid(ctrlAvg)) {
StringBuilder sb = new StringBuilder();
String name = gene.getName() + "_" + exon.getIdStr();
sb.append(name).append(",");
sb.append(gene.getChr()).append(",");
sb.append(FormatManager.getFloat(caseAvg)).append(",");
sb.append(FormatManager.getFloat(ctrlAvg)).append(",");
float covDiff = Data.NA;
if (CoverageCommand.isRelativeDifference) {
covDiff = MathManager.relativeDiff(caseAvg, ctrlAvg);
} else {
covDiff = MathManager.abs(caseAvg, ctrlAvg);
}
sb.append(FormatManager.getFloat(covDiff)).append(",");
sb.append(exon.getLength());
addExon(sb, name, caseAvg, ctrlAvg, covDiff, exon.getLength(), sr, lss);
bwCoverageSummaryByExon.write(sb.toString());
bwCoverageSummaryByExon.newLine();
}
} catch (Exception e) {
ErrorManager.send(e);
}
}
use of org.apache.commons.math3.stat.regression.SimpleRegression in project cloudsim-plus by manoelcampos.
the class MathUtil method getRobustLoessParameterEstimates.
/**
* Gets the robust loess parameter estimates.
*
* @param y the y array
* @return the robust loess parameter estimates
*/
public static double[] getRobustLoessParameterEstimates(final double... y) {
final int n = y.length;
final double[] x = new double[n];
for (int i = 0; i < n; i++) {
x[i] = i + 1;
}
final SimpleRegression tricubeRegression = createWeigthedLinearRegression(x, y, getTricubeWeights(n));
final double[] residuals = new double[n];
for (int i = 0; i < n; i++) {
residuals[i] = y[i] - tricubeRegression.predict(x[i]);
}
final SimpleRegression tricubeBySqrRegression = createWeigthedLinearRegression(x, y, getTricubeBisquareWeights(residuals));
final double[] estimates = tricubeBySqrRegression.regress().getParameterEstimates();
if (Double.isNaN(estimates[0]) || Double.isNaN(estimates[1])) {
return tricubeRegression.regress().getParameterEstimates();
}
return estimates;
}
use of org.apache.commons.math3.stat.regression.SimpleRegression in project TeeTime by teetime-framework.
the class RegressionAlgorithm method doAnalysis.
@Override
protected double doAnalysis(final ThroughputHistory history) {
final SimpleRegression regression = new SimpleRegression();
for (int i = 1; i <= this.window; i++) {
final double xaxis = history.getTimestampOfEntry(i);
final double yaxis = history.getThroughputOfEntry(i);
regression.addData(xaxis, yaxis);
}
final double currentTime = history.getTimestampOfEntry(0);
double prediction = regression.predict(currentTime);
if (Double.isNaN(prediction) || prediction < 0 || Double.isInfinite(prediction)) {
prediction = 0;
}
return prediction;
}
Aggregations