use of gdsc.smlm.results.filter.PreprocessedPeakResult in project GDSC-SMLM by aherbert.
the class FitConfiguration method validatePeak.
/**
* Check peak to see if the fit was sensible
*
* @param n
* The peak number
* @param initialParams
* The initial peak parameters
* @param params
* The fitted peak parameters
* @return True if the fit fails the criteria
*/
public FitStatus validatePeak(int n, double[] initialParams, double[] params) {
if (isDirectFilter()) {
// Always specify a new result and we have no local background or offset
PreprocessedPeakResult peak = createPreprocessedPeakResult(0, n, initialParams, params, 0, ResultType.NEW, 0, 0, false);
if (directFilter.accept(peak))
return setValidationResult(FitStatus.OK, null);
if (log != null) {
log.info("Bad peak %d: %s", peak.getId(), DirectFilter.getStatusMessage(peak, directFilter.getResult()));
}
if (DirectFilter.anySet(directFilter.getResult(), V_X_SD_FACTOR | V_Y_SD_FACTOR)) {
return setValidationResult(FitStatus.WIDTH_DIVERGED, null);
}
// At the moment we do not get any other validation data
return setValidationResult(FitStatus.FAILED_SMART_FILTER, null);
}
// additional peaks will be neighbours. In the future we may want to control this better.
if (isRegionValidation()) {
final int offset = n * 6;
final double x = params[Gaussian2DFunction.X_POSITION + offset] + coordinateOffset;
final double y = params[Gaussian2DFunction.Y_POSITION + offset] + coordinateOffset;
if (x <= 0 || x >= fitRegionWidth || y <= 0 || y >= fitRegionHeight) {
if (log != null) {
log.info("Bad peak %d: Coordinates outside fit region (x=%g,y=%g) <> %d,%d", n, x, y, fitRegionWidth, fitRegionHeight);
}
return setValidationResult(FitStatus.OUTSIDE_FIT_REGION, new double[] { x, y, fitRegionWidth, fitRegionHeight });
}
}
if (isDisableSimpleFilter())
return setValidationResult(FitStatus.OK, null);
final int offset = n * 6;
// Check spot movement
final double xShift = params[Gaussian2DFunction.X_POSITION + offset] - initialParams[Gaussian2DFunction.X_POSITION + offset];
final double yShift = params[Gaussian2DFunction.Y_POSITION + offset] - initialParams[Gaussian2DFunction.Y_POSITION + offset];
final double maxShift = coordinateShift;
if (Math.abs(xShift) > maxShift || Math.abs(yShift) > maxShift) {
if (log != null) {
log.info("Bad peak %d: Fitted coordinates moved (x=%g,y=%g) > %g", n, xShift, yShift, maxShift);
}
return setValidationResult(FitStatus.COORDINATES_MOVED, new double[] { xShift, yShift });
}
// Check signal threshold
final double signal = params[Gaussian2DFunction.SIGNAL + offset];
// Compare the signal to the desired signal strength
if (signal < signalThreshold) {
if (log != null) {
log.info("Bad peak %d: Insufficient signal %g (SNR=%g)\n", n, signal / ((gain > 0) ? gain : 1), signal / noise);
}
// System.out.printf("Bad peak %d: Insufficient signal (%gx)\n", n, signal / noise);
return setValidationResult(FitStatus.INSUFFICIENT_SIGNAL, signal);
}
// Check widths
if (isWidth0Fitting()) {
boolean badWidth = false;
double xFactor = 0, yFactor = 0;
xFactor = params[Gaussian2DFunction.X_SD + offset] / initialParams[Gaussian2DFunction.X_SD + offset];
badWidth = (xFactor > widthFactor || xFactor < minWidthFactor);
// Always do this (even if badWidth=true) since we need the factor for the return value
if (isWidth1Fitting()) {
yFactor = params[Gaussian2DFunction.Y_SD + offset] / initialParams[Gaussian2DFunction.Y_SD + offset];
badWidth = (yFactor > widthFactor || yFactor < minWidthFactor);
} else {
yFactor = xFactor;
}
if (badWidth) {
if (log != null) {
log.info("Bad peak %d: Fitted width diverged (x=%gx,y=%gx)\n", n, xFactor, yFactor);
}
return setValidationResult(FitStatus.WIDTH_DIVERGED, new double[] { xFactor, yFactor });
}
}
// Check precision
if (precisionThreshold > 0 && nmPerPixel > 0 && gain > 0) {
final double sd = (params[Gaussian2DFunction.X_SD + offset] + params[Gaussian2DFunction.Y_SD + offset]) * 0.5;
final double variance = getVariance(params[Gaussian2DFunction.BACKGROUND], signal, sd, this.precisionUsingBackground);
if (variance > precisionThreshold) {
final double precision = Math.sqrt(variance);
if (log != null) {
log.info("Bad peak %d: Insufficient precision (%gx)\n", n, precision);
}
return setValidationResult(FitStatus.INSUFFICIENT_PRECISION, precision);
}
}
return setValidationResult(FitStatus.OK, null);
}
use of gdsc.smlm.results.filter.PreprocessedPeakResult in project GDSC-SMLM by aherbert.
the class BenchmarkFilterAnalysis method createResults.
/**
* Create peak results.
*
* @param filterResults
* The results from running the filter (or null)
* @param filter
* the filter
*/
private MemoryPeakResults createResults(PreprocessedPeakResult[] filterResults, DirectFilter filter, boolean withBorder) {
if (filterResults == null) {
final MultiPathFilter multiPathFilter = createMPF(filter, minimalFilter);
//multiPathFilter.setDebugFile("/tmp/filter.txt");
filterResults = filterResults(multiPathFilter);
}
MemoryPeakResults results = new MemoryPeakResults();
results.copySettings(this.results);
results.setName(TITLE);
if (withBorder) {
// To produce the same results as the PeakFit plugin we must implement the border
// functionality used in the FitWorker. This respects the border of the spot filter.
FitEngineConfiguration config = new FitEngineConfiguration(new FitConfiguration());
updateAllConfiguration(config);
MaximaSpotFilter spotFilter = config.createSpotFilter(true);
final int border = spotFilter.getBorder();
int[] bounds = getBounds();
final int borderLimitX = bounds[0] - border;
final int borderLimitY = bounds[1] - border;
for (PreprocessedPeakResult spot : filterResults) {
if (spot.getX() > border && spot.getX() < borderLimitX && spot.getY() > border && spot.getY() < borderLimitY) {
double[] p = spot.toGaussian2DParameters();
float[] params = new float[p.length];
for (int j = 0; j < p.length; j++) params[j] = (float) p[j];
int frame = spot.getFrame();
int origX = (int) p[Gaussian2DFunction.X_POSITION];
int origY = (int) p[Gaussian2DFunction.Y_POSITION];
results.addf(frame, origX, origY, 0, 0, spot.getNoise(), params, null);
}
}
} else {
for (PreprocessedPeakResult spot : filterResults) {
double[] p = spot.toGaussian2DParameters();
float[] params = new float[p.length];
for (int j = 0; j < p.length; j++) params[j] = (float) p[j];
int frame = spot.getFrame();
int origX = (int) p[Gaussian2DFunction.X_POSITION];
int origY = (int) p[Gaussian2DFunction.Y_POSITION];
results.addf(frame, origX, origY, 0, 0, spot.getNoise(), params, null);
}
}
return results;
}
use of gdsc.smlm.results.filter.PreprocessedPeakResult in project GDSC-SMLM by aherbert.
the class FitWorker method add.
/*
* (non-Javadoc)
*
* @see gdsc.smlm.results.filter.MultiPathFilter.SelectedResultStore#add(gdsc.smlm.results.filter.MultiPathFilter.
* SelectedResult)
*/
public void add(SelectedResult selectedResult) {
// TODO - Print the current state of the dynamicMultiPathFitResult to file.
// This will allow debugging what is different between the benchmark fit and the PeakFit.
// Output:
// slice
// candidate Id
// Initial and final params for each fit result.
// Details of the selected result.
// Then try to figure out why the benchmark fit deviates from PeakFit.
// Add to the slice results.
final PreprocessedPeakResult[] results = selectedResult.results;
if (results == null)
return;
final int currrentSize = sliceResults.size();
final int candidateId = dynamicMultiPathFitResult.candidateId;
final FitResult fitResult = (FitResult) selectedResult.fitResult.data;
// The background for each result was the local background. We want the fitted global background
final float background = (float) fitResult.getParameters()[0];
final double[] dev = fitResult.getParameterStdDev();
if (queueSize != 0)
throw new RuntimeException("There are results queued already!");
for (int i = 0; i < results.length; i++) {
if (results[i].isExistingResult())
continue;
if (results[i].isNewResult()) {
final double[] p = results[i].toGaussian2DParameters();
// Store slice results relative to the data frame (not the global bounds)
// Convert back so that 0,0 is the top left of the data bounds
p[Gaussian2DFunction.X_POSITION] -= cc.dataBounds.x;
p[Gaussian2DFunction.Y_POSITION] -= cc.dataBounds.y;
final float[] params = new float[7];
params[Gaussian2DFunction.BACKGROUND] = background;
for (int j = 1; j < 7; j++) params[j] = (float) p[j];
final float[] paramsDev;
if (dev == null) {
paramsDev = null;
} else {
paramsDev = new float[7];
paramsDev[Gaussian2DFunction.BACKGROUND] = (float) dev[Gaussian2DFunction.BACKGROUND];
final int offset = results[i].getId() * 6;
for (int j = 1; j < 7; j++) paramsDev[j] = (float) dev[offset + j];
}
addSingleResult(results[i].getCandidateId(), params, paramsDev, fitResult.getError(), results[i].getNoise());
if (logger != null) {
// Show the shift, signal and width spread
PreprocessedPeakResult peak = results[i];
logger.info("Fit OK %d (%.1f,%.1f) [%d]: Shift = %.3f,%.3f : SNR = %.2f : Width = %.2f,%.2f", peak.getCandidateId(), peak.getX(), peak.getY(), peak.getId(), Math.sqrt(peak.getXRelativeShift2()), Math.sqrt(peak.getYRelativeShift2()), peak.getSNR(), peak.getXSDFactor(), peak.getYSDFactor());
}
} else {
// This is a candidate that passed validation. Store the estimate as passing the primary filter.
// We now do this is the pass() method.
//storeEstimate(results[i].getCandidateId(), results[i], FILTER_RANK_PRIMARY);
}
}
job.setFitResult(candidateId, fitResult);
// Reporting
if (this.counter != null) {
FitType fitType = dynamicMultiPathFitResult.fitType;
if (selectedResult.fitResult.getStatus() == 0) {
fitType.setOK(true);
if (dynamicMultiPathFitResult.getSuperMultiFitResult() == selectedResult.fitResult)
fitType.setMultiOK(true);
else if (dynamicMultiPathFitResult.getSuperMultiDoubletFitResult() == selectedResult.fitResult)
fitType.setMultiDoubletOK(true);
else if (dynamicMultiPathFitResult.getSuperDoubletFitResult() == selectedResult.fitResult)
fitType.setDoubletOK(true);
}
add(fitType);
}
if (logger != null) {
switch(fitResult.getStatus()) {
case OK:
// We log good results in the loop above.
break;
case BAD_PARAMETERS:
case FAILED_TO_ESTIMATE_WIDTH:
logger.info("Bad parameters: %s", Arrays.toString(fitResult.getInitialParameters()));
break;
default:
logger.info(fitResult.getStatus().toString());
break;
}
}
// Debugging
if (logger2 != null) {
double[] peakParams = fitResult.getParameters();
if (peakParams != null) {
// Parameters are the raw values from fitting the region. Convert for logging.
peakParams = Arrays.copyOf(peakParams, peakParams.length);
int npeaks = peakParams.length / 6;
for (int i = 0; i < npeaks; i++) {
peakParams[i * 6 + Gaussian2DFunction.X_POSITION] += cc.fromFitRegionToGlobalX();
peakParams[i * 6 + Gaussian2DFunction.Y_POSITION] += cc.fromFitRegionToGlobalY();
peakParams[i * 6 + Gaussian2DFunction.SHAPE] *= 180.0 / Math.PI;
}
}
final int x = candidates.get(candidateId).x;
final int y = candidates.get(candidateId).y;
logger2.debug("%d:%d [%d,%d] %s (%s) = %s\n", slice, candidateId, cc.fromDataToGlobalX(x), cc.fromDataToGlobalY(y), fitResult.getStatus(), fitResult.getStatusData(), Arrays.toString(peakParams));
}
// Check if there were any new results
int npeaks = sliceResults.size() - currrentSize;
if (npeaks != 0) {
success++;
// Support for post-processing filter
if (resultFilter != null) {
// Check all result peaks for the distance to the filter positions
PeakResult[] peakResults = new PeakResult[npeaks];
for (int i = sliceResults.size(); npeaks-- > 0; ) {
peakResults[npeaks] = sliceResults.get(--i);
}
resultFilter.filter(fitResult, candidateId, peakResults);
}
}
}
use of gdsc.smlm.results.filter.PreprocessedPeakResult in project GDSC-SMLM by aherbert.
the class BenchmarkSpotFit method summariseResults.
private void summariseResults(TIntObjectHashMap<FilterCandidates> filterCandidates, long runTime, final PreprocessedPeakResult[] preprocessedPeakResults, int nUniqueIDs) {
createTable();
// Summarise the fitting results. N fits, N failures.
// Optimal match statistics if filtering is perfect (since fitting is not perfect).
StoredDataStatistics distanceStats = new StoredDataStatistics();
StoredDataStatistics depthStats = new StoredDataStatistics();
// Get stats for all fitted results and those that match
// Signal, SNR, Width, xShift, yShift, Precision
createFilterCriteria();
StoredDataStatistics[][] stats = new StoredDataStatistics[3][filterCriteria.length];
for (int i = 0; i < stats.length; i++) for (int j = 0; j < stats[i].length; j++) stats[i][j] = new StoredDataStatistics();
final double nmPerPixel = simulationParameters.a;
double tp = 0, fp = 0;
int failcTP = 0, failcFP = 0;
int cTP = 0, cFP = 0;
int[] singleStatus = null, multiStatus = null, doubletStatus = null, multiDoubletStatus = null;
singleStatus = new int[FitStatus.values().length];
multiStatus = new int[singleStatus.length];
doubletStatus = new int[singleStatus.length];
multiDoubletStatus = new int[singleStatus.length];
// Easier to materialise the values since we have a lot of non final variables to manipulate
final int[] frames = new int[filterCandidates.size()];
final FilterCandidates[] candidates = new FilterCandidates[filterCandidates.size()];
final int[] counter = new int[1];
filterCandidates.forEachEntry(new TIntObjectProcedure<FilterCandidates>() {
public boolean execute(int a, FilterCandidates b) {
frames[counter[0]] = a;
candidates[counter[0]] = b;
counter[0]++;
return true;
}
});
for (FilterCandidates result : candidates) {
// Count the number of fit results that matched (tp) and did not match (fp)
tp += result.tp;
fp += result.fp;
for (int i = 0; i < result.fitResult.length; i++) {
if (result.spots[i].match)
cTP++;
else
cFP++;
final MultiPathFitResult fitResult = result.fitResult[i];
if (singleStatus != null && result.spots[i].match) {
// Debugging reasons for fit failure
addStatus(singleStatus, fitResult.getSingleFitResult());
addStatus(multiStatus, fitResult.getMultiFitResult());
addStatus(doubletStatus, fitResult.getDoubletFitResult());
addStatus(multiDoubletStatus, fitResult.getMultiDoubletFitResult());
}
if (noMatch(fitResult)) {
if (result.spots[i].match)
failcTP++;
else
failcFP++;
}
// We have multi-path results.
// We want statistics for:
// [0] all fitted spots
// [1] fitted spots that match a result
// [2] fitted spots that do not match a result
addToStats(fitResult.getSingleFitResult(), stats);
addToStats(fitResult.getMultiFitResult(), stats);
addToStats(fitResult.getDoubletFitResult(), stats);
addToStats(fitResult.getMultiDoubletFitResult(), stats);
}
// Statistics on spots that fit an actual result
for (int i = 0; i < result.match.length; i++) {
if (!result.match[i].isFitResult())
// For now just ignore the candidates that matched
continue;
FitMatch fitMatch = (FitMatch) result.match[i];
distanceStats.add(fitMatch.d * nmPerPixel);
depthStats.add(fitMatch.z * nmPerPixel);
}
}
// Store data for computing correlation
double[] i1 = new double[depthStats.getN()];
double[] i2 = new double[i1.length];
double[] is = new double[i1.length];
int ci = 0;
for (FilterCandidates result : candidates) {
for (int i = 0; i < result.match.length; i++) {
if (!result.match[i].isFitResult())
// For now just ignore the candidates that matched
continue;
FitMatch fitMatch = (FitMatch) result.match[i];
ScoredSpot spot = result.spots[fitMatch.i];
i1[ci] = fitMatch.predictedSignal;
i2[ci] = fitMatch.actualSignal;
is[ci] = spot.spot.intensity;
ci++;
}
}
// We want to compute the Jaccard against the spot metric
// Filter the results using the multi-path filter
ArrayList<MultiPathFitResults> multiPathResults = new ArrayList<MultiPathFitResults>(filterCandidates.size());
for (int i = 0; i < frames.length; i++) {
int frame = frames[i];
MultiPathFitResult[] multiPathFitResults = candidates[i].fitResult;
int totalCandidates = candidates[i].spots.length;
int nActual = actualCoordinates.get(frame).size();
multiPathResults.add(new MultiPathFitResults(frame, multiPathFitResults, totalCandidates, nActual));
}
// Score the results and count the number returned
List<FractionalAssignment[]> assignments = new ArrayList<FractionalAssignment[]>();
final TIntHashSet set = new TIntHashSet(nUniqueIDs);
FractionScoreStore scoreStore = new FractionScoreStore() {
public void add(int uniqueId) {
set.add(uniqueId);
}
};
MultiPathFitResults[] multiResults = multiPathResults.toArray(new MultiPathFitResults[multiPathResults.size()]);
// Filter with no filter
MultiPathFilter mpf = new MultiPathFilter(new SignalFilter(0), null, multiFilter.residualsThreshold);
FractionClassificationResult fractionResult = mpf.fractionScoreSubset(multiResults, Integer.MAX_VALUE, this.results.size(), assignments, scoreStore, CoordinateStoreFactory.create(imp.getWidth(), imp.getHeight(), fitConfig.getDuplicateDistance()));
double nPredicted = fractionResult.getTP() + fractionResult.getFP();
final double[][] matchScores = new double[set.size()][];
int count = 0;
for (int i = 0; i < assignments.size(); i++) {
FractionalAssignment[] a = assignments.get(i);
if (a == null)
continue;
for (int j = 0; j < a.length; j++) {
final PreprocessedPeakResult r = ((PeakFractionalAssignment) a[j]).peakResult;
set.remove(r.getUniqueId());
final double precision = Math.sqrt(r.getLocationVariance());
final double signal = r.getSignal();
final double snr = r.getSNR();
final double width = r.getXSDFactor();
final double xShift = r.getXRelativeShift2();
final double yShift = r.getYRelativeShift2();
// Since these two are combined for filtering and the max is what matters.
final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
final double eshift = Math.sqrt(xShift + yShift);
final double[] score = new double[8];
score[FILTER_SIGNAL] = signal;
score[FILTER_SNR] = snr;
score[FILTER_MIN_WIDTH] = width;
score[FILTER_MAX_WIDTH] = width;
score[FILTER_SHIFT] = shift;
score[FILTER_ESHIFT] = eshift;
score[FILTER_PRECISION] = precision;
score[FILTER_PRECISION + 1] = a[j].getScore();
matchScores[count++] = score;
}
}
// Add the rest
set.forEach(new CustomTIntProcedure(count) {
public boolean execute(int uniqueId) {
// This should not be null or something has gone wrong
PreprocessedPeakResult r = preprocessedPeakResults[uniqueId];
if (r == null)
throw new RuntimeException("Missing result: " + uniqueId);
final double precision = Math.sqrt(r.getLocationVariance());
final double signal = r.getSignal();
final double snr = r.getSNR();
final double width = r.getXSDFactor();
final double xShift = r.getXRelativeShift2();
final double yShift = r.getYRelativeShift2();
// Since these two are combined for filtering and the max is what matters.
final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
final double eshift = Math.sqrt(xShift + yShift);
final double[] score = new double[8];
score[FILTER_SIGNAL] = signal;
score[FILTER_SNR] = snr;
score[FILTER_MIN_WIDTH] = width;
score[FILTER_MAX_WIDTH] = width;
score[FILTER_SHIFT] = shift;
score[FILTER_ESHIFT] = eshift;
score[FILTER_PRECISION] = precision;
matchScores[c++] = score;
return true;
}
});
// Debug the reasons the fit failed
if (singleStatus != null) {
String name = PeakFit.getSolverName(fitConfig);
if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera())
name += " Camera";
System.out.println("Failure counts: " + name);
printFailures("Single", singleStatus);
printFailures("Multi", multiStatus);
printFailures("Doublet", doubletStatus);
printFailures("Multi doublet", multiDoubletStatus);
}
StringBuilder sb = new StringBuilder(300);
// Add information about the simulation
//(simulationParameters.minSignal + simulationParameters.maxSignal) * 0.5;
final double signal = simulationParameters.signalPerFrame;
final int n = results.size();
sb.append(imp.getStackSize()).append("\t");
final int w = imp.getWidth();
final int h = imp.getHeight();
sb.append(w).append("\t");
sb.append(h).append("\t");
sb.append(n).append("\t");
double density = ((double) n / imp.getStackSize()) / (w * h) / (simulationParameters.a * simulationParameters.a / 1e6);
sb.append(Utils.rounded(density)).append("\t");
sb.append(Utils.rounded(signal)).append("\t");
sb.append(Utils.rounded(simulationParameters.s)).append("\t");
sb.append(Utils.rounded(simulationParameters.a)).append("\t");
sb.append(Utils.rounded(simulationParameters.depth)).append("\t");
sb.append(simulationParameters.fixedDepth).append("\t");
sb.append(Utils.rounded(simulationParameters.gain)).append("\t");
sb.append(Utils.rounded(simulationParameters.readNoise)).append("\t");
sb.append(Utils.rounded(simulationParameters.b)).append("\t");
sb.append(Utils.rounded(simulationParameters.b2)).append("\t");
// Compute the noise
double noise = simulationParameters.b2;
if (simulationParameters.emCCD) {
// The b2 parameter was computed without application of the EM-CCD noise factor of 2.
//final double b2 = backgroundVariance + readVariance
// = simulationParameters.b + readVariance
// This should be applied only to the background variance.
final double readVariance = noise - simulationParameters.b;
noise = simulationParameters.b * 2 + readVariance;
}
if (simulationParameters.fullSimulation) {
// The total signal is spread over frames
}
sb.append(Utils.rounded(signal / Math.sqrt(noise))).append("\t");
sb.append(Utils.rounded(simulationParameters.s / simulationParameters.a)).append("\t");
sb.append(spotFilter.getDescription());
// nP and nN is the fractional score of the spot candidates
addCount(sb, nP + nN);
addCount(sb, nP);
addCount(sb, nN);
addCount(sb, fP);
addCount(sb, fN);
String name = PeakFit.getSolverName(fitConfig);
if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera())
name += " Camera";
add(sb, name);
add(sb, config.getFitting());
resultPrefix = sb.toString();
// Q. Should I add other fit configuration here?
// The fraction of positive and negative candidates that were included
add(sb, (100.0 * cTP) / nP);
add(sb, (100.0 * cFP) / nN);
// Score the fitting results compared to the original simulation.
// Score the candidate selection:
add(sb, cTP + cFP);
add(sb, cTP);
add(sb, cFP);
// TP are all candidates that can be matched to a spot
// FP are all candidates that cannot be matched to a spot
// FN = The number of missed spots
FractionClassificationResult m = new FractionClassificationResult(cTP, cFP, 0, simulationParameters.molecules - cTP);
add(sb, m.getRecall());
add(sb, m.getPrecision());
add(sb, m.getF1Score());
add(sb, m.getJaccard());
// Score the fitting results:
add(sb, failcTP);
add(sb, failcFP);
// TP are all fit results that can be matched to a spot
// FP are all fit results that cannot be matched to a spot
// FN = The number of missed spots
add(sb, tp);
add(sb, fp);
m = new FractionClassificationResult(tp, fp, 0, simulationParameters.molecules - tp);
add(sb, m.getRecall());
add(sb, m.getPrecision());
add(sb, m.getF1Score());
add(sb, m.getJaccard());
// Do it again but pretend we can perfectly filter all the false positives
//add(sb, tp);
m = new FractionClassificationResult(tp, 0, 0, simulationParameters.molecules - tp);
// Recall is unchanged
// Precision will be 100%
add(sb, m.getF1Score());
add(sb, m.getJaccard());
// The mean may be subject to extreme outliers so use the median
double median = distanceStats.getMedian();
add(sb, median);
WindowOrganiser wo = new WindowOrganiser();
String label = String.format("Recall = %s. n = %d. Median = %s nm. SD = %s nm", Utils.rounded(m.getRecall()), distanceStats.getN(), Utils.rounded(median), Utils.rounded(distanceStats.getStandardDeviation()));
int id = Utils.showHistogram(TITLE, distanceStats, "Match Distance (nm)", 0, 0, 0, label);
if (Utils.isNewWindow())
wo.add(id);
median = depthStats.getMedian();
add(sb, median);
// Sort by spot intensity and produce correlation
int[] indices = Utils.newArray(i1.length, 0, 1);
if (showCorrelation)
Sort.sort(indices, is, rankByIntensity);
double[] r = (showCorrelation) ? new double[i1.length] : null;
double[] sr = (showCorrelation) ? new double[i1.length] : null;
double[] rank = (showCorrelation) ? new double[i1.length] : null;
ci = 0;
FastCorrelator fastCorrelator = new FastCorrelator();
ArrayList<Ranking> pc1 = new ArrayList<Ranking>();
ArrayList<Ranking> pc2 = new ArrayList<Ranking>();
for (int ci2 : indices) {
fastCorrelator.add((long) Math.round(i1[ci2]), (long) Math.round(i2[ci2]));
pc1.add(new Ranking(i1[ci2], ci));
pc2.add(new Ranking(i2[ci2], ci));
if (showCorrelation) {
r[ci] = fastCorrelator.getCorrelation();
sr[ci] = Correlator.correlation(rank(pc1), rank(pc2));
if (rankByIntensity)
rank[ci] = is[0] - is[ci];
else
rank[ci] = ci;
}
ci++;
}
final double pearsonCorr = fastCorrelator.getCorrelation();
final double rankedCorr = Correlator.correlation(rank(pc1), rank(pc2));
// Get the regression
SimpleRegression regression = new SimpleRegression(false);
for (int i = 0; i < pc1.size(); i++) regression.addData(pc1.get(i).value, pc2.get(i).value);
//final double intercept = regression.getIntercept();
final double slope = regression.getSlope();
if (showCorrelation) {
String title = TITLE + " Intensity";
Plot plot = new Plot(title, "Candidate", "Spot");
double[] limits1 = Maths.limits(i1);
double[] limits2 = Maths.limits(i2);
plot.setLimits(limits1[0], limits1[1], limits2[0], limits2[1]);
label = String.format("Correlation=%s; Ranked=%s; Slope=%s", Utils.rounded(pearsonCorr), Utils.rounded(rankedCorr), Utils.rounded(slope));
plot.addLabel(0, 0, label);
plot.setColor(Color.red);
plot.addPoints(i1, i2, Plot.DOT);
if (slope > 1)
plot.drawLine(limits1[0], limits1[0] * slope, limits1[1], limits1[1] * slope);
else
plot.drawLine(limits2[0] / slope, limits2[0], limits2[1] / slope, limits2[1]);
PlotWindow pw = Utils.display(title, plot);
if (Utils.isNewWindow())
wo.add(pw);
title = TITLE + " Correlation";
plot = new Plot(title, "Spot Rank", "Correlation");
double[] xlimits = Maths.limits(rank);
double[] ylimits = Maths.limits(r);
ylimits = Maths.limits(ylimits, sr);
plot.setLimits(xlimits[0], xlimits[1], ylimits[0], ylimits[1]);
plot.setColor(Color.red);
plot.addPoints(rank, r, Plot.LINE);
plot.setColor(Color.blue);
plot.addPoints(rank, sr, Plot.LINE);
plot.setColor(Color.black);
plot.addLabel(0, 0, label);
pw = Utils.display(title, plot);
if (Utils.isNewWindow())
wo.add(pw);
}
add(sb, pearsonCorr);
add(sb, rankedCorr);
add(sb, slope);
label = String.format("n = %d. Median = %s nm", depthStats.getN(), Utils.rounded(median));
id = Utils.showHistogram(TITLE, depthStats, "Match Depth (nm)", 0, 1, 0, label);
if (Utils.isNewWindow())
wo.add(id);
// Plot histograms of the stats on the same window
double[] lower = new double[filterCriteria.length];
double[] upper = new double[lower.length];
min = new double[lower.length];
max = new double[lower.length];
for (int i = 0; i < stats[0].length; i++) {
double[] limits = showDoubleHistogram(stats, i, wo, matchScores, nPredicted);
lower[i] = limits[0];
upper[i] = limits[1];
min[i] = limits[2];
max[i] = limits[3];
}
// Reconfigure some of the range limits
// Make this a bit bigger
upper[FILTER_SIGNAL] *= 2;
// Make this a bit bigger
upper[FILTER_SNR] *= 2;
double factor = 0.25;
if (lower[FILTER_MIN_WIDTH] != 0)
// (assuming lower is less than 1)
upper[FILTER_MIN_WIDTH] = 1 - Math.max(0, factor * (1 - lower[FILTER_MIN_WIDTH]));
if (upper[FILTER_MIN_WIDTH] != 0)
// (assuming upper is more than 1)
lower[FILTER_MAX_WIDTH] = 1 + Math.max(0, factor * (upper[FILTER_MAX_WIDTH] - 1));
// Round the ranges
final double[] interval = new double[stats[0].length];
interval[FILTER_SIGNAL] = SignalFilter.DEFAULT_INCREMENT;
interval[FILTER_SNR] = SNRFilter.DEFAULT_INCREMENT;
interval[FILTER_MIN_WIDTH] = WidthFilter2.DEFAULT_MIN_INCREMENT;
interval[FILTER_MAX_WIDTH] = WidthFilter.DEFAULT_INCREMENT;
interval[FILTER_SHIFT] = ShiftFilter.DEFAULT_INCREMENT;
interval[FILTER_ESHIFT] = EShiftFilter.DEFAULT_INCREMENT;
interval[FILTER_PRECISION] = PrecisionFilter.DEFAULT_INCREMENT;
interval[FILTER_ITERATIONS] = 0.1;
interval[FILTER_EVALUATIONS] = 0.1;
// Create a range increment
double[] increment = new double[lower.length];
for (int i = 0; i < increment.length; i++) {
lower[i] = Maths.floor(lower[i], interval[i]);
upper[i] = Maths.ceil(upper[i], interval[i]);
double range = upper[i] - lower[i];
// Allow clipping if the range is small compared to the min increment
double multiples = range / interval[i];
// Use 8 multiples for the equivalent of +/- 4 steps around the centre
if (multiples < 8) {
multiples = Math.ceil(multiples);
} else
multiples = 8;
increment[i] = Maths.ceil(range / multiples, interval[i]);
if (i == FILTER_MIN_WIDTH)
// Requires clipping based on the upper limit
lower[i] = upper[i] - increment[i] * multiples;
else
upper[i] = lower[i] + increment[i] * multiples;
}
for (int i = 0; i < stats[0].length; i++) {
lower[i] = Maths.round(lower[i]);
upper[i] = Maths.round(upper[i]);
min[i] = Maths.round(min[i]);
max[i] = Maths.round(max[i]);
increment[i] = Maths.round(increment[i]);
sb.append("\t").append(min[i]).append(':').append(lower[i]).append('-').append(upper[i]).append(':').append(max[i]);
}
// Disable some filters
increment[FILTER_SIGNAL] = Double.POSITIVE_INFINITY;
//increment[FILTER_SHIFT] = Double.POSITIVE_INFINITY;
increment[FILTER_ESHIFT] = Double.POSITIVE_INFINITY;
wo.tile();
sb.append("\t").append(Utils.timeToString(runTime / 1000000.0));
summaryTable.append(sb.toString());
if (saveFilterRange) {
GlobalSettings gs = SettingsManager.loadSettings();
FilterSettings filterSettings = gs.getFilterSettings();
String filename = (silent) ? filterSettings.filterSetFilename : Utils.getFilename("Filter_range_file", filterSettings.filterSetFilename);
if (filename == null)
return;
// Remove extension to store the filename
filename = Utils.replaceExtension(filename, ".xml");
filterSettings.filterSetFilename = filename;
// Create a filter set using the ranges
ArrayList<Filter> filters = new ArrayList<Filter>(3);
filters.add(new MultiFilter2(lower[0], (float) lower[1], lower[2], lower[3], lower[4], lower[5], lower[6]));
filters.add(new MultiFilter2(upper[0], (float) upper[1], upper[2], upper[3], upper[4], upper[5], upper[6]));
filters.add(new MultiFilter2(increment[0], (float) increment[1], increment[2], increment[3], increment[4], increment[5], increment[6]));
if (saveFilters(filename, filters))
SettingsManager.saveSettings(gs);
// Create a filter set using the min/max and the initial bounds.
// Set sensible limits
min[FILTER_SIGNAL] = Math.max(min[FILTER_SIGNAL], 30);
max[FILTER_PRECISION] = Math.min(max[FILTER_PRECISION], 100);
// Commented this out so that the 4-set filters are the same as the 3-set filters.
// The difference leads to differences when optimising.
// // Use half the initial bounds (hoping this is a good starting guess for the optimum)
// final boolean[] limitToLower = new boolean[min.length];
// limitToLower[FILTER_SIGNAL] = true;
// limitToLower[FILTER_SNR] = true;
// limitToLower[FILTER_MIN_WIDTH] = true;
// limitToLower[FILTER_MAX_WIDTH] = false;
// limitToLower[FILTER_SHIFT] = false;
// limitToLower[FILTER_ESHIFT] = false;
// limitToLower[FILTER_PRECISION] = true;
// for (int i = 0; i < limitToLower.length; i++)
// {
// final double range = (upper[i] - lower[i]) / 2;
// if (limitToLower[i])
// upper[i] = lower[i] + range;
// else
// lower[i] = upper[i] - range;
// }
filters = new ArrayList<Filter>(4);
filters.add(new MultiFilter2(min[0], (float) min[1], min[2], min[3], min[4], min[5], min[6]));
filters.add(new MultiFilter2(lower[0], (float) lower[1], lower[2], lower[3], lower[4], lower[5], lower[6]));
filters.add(new MultiFilter2(upper[0], (float) upper[1], upper[2], upper[3], upper[4], upper[5], upper[6]));
filters.add(new MultiFilter2(max[0], (float) max[1], max[2], max[3], max[4], max[5], max[6]));
saveFilters(Utils.replaceExtension(filename, ".4.xml"), filters);
}
}
use of gdsc.smlm.results.filter.PreprocessedPeakResult in project GDSC-SMLM by aherbert.
the class BenchmarkSpotFit method run.
private void run() {
// Extract all the results in memory into a list per frame. This can be cached
boolean refresh = false;
if (lastId != simulationParameters.id) {
// Do not get integer coordinates
// The Coordinate objects will be PeakResultPoint objects that store the original PeakResult
// from the MemoryPeakResults
actualCoordinates = ResultsMatchCalculator.getCoordinates(results.getResults(), false);
lastId = simulationParameters.id;
refresh = true;
}
// Extract all the candidates into a list per frame. This can be cached if the settings have not changed
final int width = (config.isIncludeNeighbours()) ? config.getRelativeFitting() : 0;
final Settings settings = new Settings(BenchmarkSpotFilter.filterResult.id, fractionPositives, fractionNegativesAfterAllPositives, negativesAfterAllPositives, width);
if (refresh || !settings.equals(lastSettings)) {
filterCandidates = subsetFilterResults(BenchmarkSpotFilter.filterResult.filterResults, width);
lastSettings = settings;
lastFilterId = BenchmarkSpotFilter.filterResult.id;
}
stopWatch = StopWatch.createStarted();
final ImageStack stack = imp.getImageStack();
clearFitResults();
// Save results to memory
MemoryPeakResults peakResults = new MemoryPeakResults();
peakResults.copySettings(this.results);
peakResults.setName(TITLE);
MemoryPeakResults.addResults(peakResults);
// Create a pool of workers
final int nThreads = Prefs.getThreads();
BlockingQueue<Integer> jobs = new ArrayBlockingQueue<Integer>(nThreads * 2);
List<Worker> workers = new LinkedList<Worker>();
List<Thread> threads = new LinkedList<Thread>();
for (int i = 0; i < nThreads; i++) {
Worker worker = new Worker(jobs, stack, actualCoordinates, filterCandidates, peakResults);
Thread t = new Thread(worker);
workers.add(worker);
threads.add(t);
t.start();
}
// Fit the frames
long runTime = System.nanoTime();
totalProgress = stack.getSize();
stepProgress = Utils.getProgressInterval(totalProgress);
progress = 0;
for (int i = 1; i <= totalProgress; i++) {
put(jobs, i);
}
// Finish all the worker threads by passing in a null job
for (int i = 0; i < threads.size(); i++) {
put(jobs, -1);
}
// Wait for all to finish
for (int i = 0; i < threads.size(); i++) {
try {
threads.get(i).join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
threads.clear();
IJ.showProgress(1);
runTime = System.nanoTime() - runTime;
if (Utils.isInterrupted()) {
return;
}
stopWatch.stop();
final String timeString = stopWatch.toString();
IJ.log("Spot fit time : " + timeString);
IJ.showStatus("Collecting results ...");
fitResultsId++;
fitResults = new TIntObjectHashMap<FilterCandidates>();
for (Worker w : workers) {
fitResults.putAll(w.results);
}
// Assign a unique ID to each result
int count = 0;
// Materialise into an array since we use it twice
FilterCandidates[] candidates = fitResults.values(new FilterCandidates[fitResults.size()]);
for (FilterCandidates result : candidates) {
for (int i = 0; i < result.fitResult.length; i++) {
final MultiPathFitResult fitResult = result.fitResult[i];
count += count(fitResult.getSingleFitResult());
count += count(fitResult.getMultiFitResult());
count += count(fitResult.getDoubletFitResult());
count += count(fitResult.getMultiDoubletFitResult());
}
}
PreprocessedPeakResult[] preprocessedPeakResults = new PreprocessedPeakResult[count];
count = 0;
for (FilterCandidates result : candidates) {
for (int i = 0; i < result.fitResult.length; i++) {
final MultiPathFitResult fitResult = result.fitResult[i];
count = store(fitResult.getSingleFitResult(), count, preprocessedPeakResults);
count = store(fitResult.getMultiFitResult(), count, preprocessedPeakResults);
count = store(fitResult.getDoubletFitResult(), count, preprocessedPeakResults);
count = store(fitResult.getMultiDoubletFitResult(), count, preprocessedPeakResults);
}
}
summariseResults(fitResults, runTime, preprocessedPeakResults, count);
IJ.showStatus("");
}
Aggregations