Search in sources :

Example 1 with MultiPathFitResults

use of gdsc.smlm.results.filter.MultiPathFitResults in project GDSC-SMLM by aherbert.

the class BenchmarkFilterAnalysis method readResults.

private MultiPathFitResults[] readResults() {
    // XXX set to true when debugging
    boolean update = resultsList == null;
    if (lastId != BenchmarkSpotFit.fitResultsId) {
        if (lastId == 0) {
            // Copy the settings from the fitter if this is the first run
            failCount = BenchmarkSpotFit.config.getFailuresLimit();
            duplicateDistance = BenchmarkSpotFit.fitConfig.getDuplicateDistance();
            sResidualsThreshold = (BenchmarkSpotFit.computeDoublets) ? BenchmarkSpotFit.multiFilter.residualsThreshold : 1;
        }
        lastId = BenchmarkSpotFit.fitResultsId;
        update = true;
        actualCoordinates = getCoordinates(results.getResults());
    }
    Settings settings = new Settings(partialMatchDistance, upperMatchDistance, partialSignalFactor, upperSignalFactor);
    boolean equalScoreSettings = settings.equals(lastReadResultsSettings);
    if (update || !equalScoreSettings || lastDuplicateDistance != duplicateDistance) {
        IJ.showStatus("Reading results ...");
        // This functionality is for choosing the optimum filter for the given scoring metric.
        if (!equalScoreSettings)
            scores.clear();
        lastReadResultsSettings = settings;
        lastDuplicateDistance = duplicateDistance;
        depthStats = null;
        depthFitStats = null;
        signalFactorStats = null;
        distanceStats = null;
        matches = 0;
        fittedResults = 0;
        totalResults = 0;
        notDuplicateCount = 0;
        newResultCount = 0;
        maxUniqueId = 0;
        nActual = 0;
        // -=-=-=-
        // The scoring is designed to find the best fitter+filter combination for the given spot candidates.
        // The ideal combination would correctly fit+pick all the candidate positions that are close to a
        // localisation.
        //
        // Use the following scoring scheme for all candidates:
        // 
        //  Candidates
        // +----------------------------------------+  
        // |   Actual matches                       | 
        // |  +-----------+                TN       |
        // |  |  FN       |                         |
        // |  |      +----------                    |
        // |  |      | TP |    | Fitted             |
        // |  +-----------+    | spots              |
        // |         |     FP  |                    |
        // |         +---------+                    |
        // +----------------------------------------+
        //
        // Candidates     = All the spot candidates
        // Actual matches = Any spot candidate or fitted spot candidate that matches a localisation
        // Fitted spots   = Any spot candidate that was successfully fitted
        //
        // TP = A spot candidate that was fitted and matches a localisation and is accepted
        // FP = A spot candidate that was fitted but does not match a localisation and is accepted
        // FN = A spot candidate that failed to be fitted but matches a localisation
        //    = A spot candidate that was fitted and matches a localisation and is rejected
        // TN = A spot candidate that failed to be fitted and does not match a localisation
        //    = A spot candidate that was fitted and does not match a localisation and is rejected
        //
        // When fitting only produces one result it is possible to compute the TN score.
        // Since unfitted candidates can only be TN or FN we could accumulate these scores and cache them.
        // This was the old method of benchmarking single spot fitting and allowed more scores to be 
        // computed.
        //
        // When fitting produces multiple results then we have to score each fit result against all possible
        // actual results and keep a record of the scores. These can then be assessed when the specific 
        // results have been chosen by result filtering.
        //
        // Using a distance ramped scoring function the degree of match can be varied from 0 to 1.
        // Using a signal-factor ramped scoring function the degree of fitted can be varied from 0 to 1.
        // When using ramped scoring functions the fractional allocation of scores using the above scheme 
        // is performed, i.e. candidates are treated as if they both match and unmatch. This results in 
        // an equivalent to multiple analysis using different thresholds and averaging of the scores.
        //
        // The totals TP+FP+TN+FN must equal the number of spot candidates. This allows different fitting 
        // methods to be compared since the total number of candidates is the same.
        //
        // Precision = TP / (TP+FP)    : This is always valid as a minimum criteria score
        // Recall    = TP / (TP+FN)    : This is valid between different fitting methods since a method that 
        //                               fits more spots will have a potentially lower FN
        // Jaccard   = TP / (TP+FN+FP) : This is valid between fitting methods
        //
        // -=-=-=-
        // As an alternative scoring system, different fitting methods can be compared using the same TP 
        // value but calculating FN = localisations - TP and FP as Positives - TP. This creates a score 
        // against the original number of simulated molecules using everything that was passed through the 
        // filter (Positives). This score is comparable when a different spot candidate filter has been used 
        // and the total number of candidates is different, e.g. Mean filtering vs. Gaussian filtering
        // -=-=-=-
        final RampedScore distanceScore = new RampedScore(BenchmarkSpotFit.distanceInPixels * partialMatchDistance / 100.0, BenchmarkSpotFit.distanceInPixels * upperMatchDistance / 100.0);
        lowerDistanceInPixels = distanceScore.lower;
        distanceInPixels = distanceScore.upper;
        final double matchDistance = distanceInPixels * distanceInPixels;
        resultsPrefix3 = "\t" + Utils.rounded(distanceScore.lower * simulationParameters.a) + "\t" + Utils.rounded(distanceScore.upper * simulationParameters.a);
        limitRange = ", d=" + Utils.rounded(distanceScore.lower * simulationParameters.a) + "-" + Utils.rounded(distanceScore.upper * simulationParameters.a);
        // Signal factor must be greater than 1
        final RampedScore signalScore;
        if (BenchmarkSpotFit.signalFactor > 0 && upperSignalFactor > 0) {
            signalScore = new RampedScore(BenchmarkSpotFit.signalFactor * partialSignalFactor / 100.0, BenchmarkSpotFit.signalFactor * upperSignalFactor / 100.0);
            lowerSignalFactor = signalScore.lower;
            signalFactor = signalScore.upper;
            resultsPrefix3 += "\t" + Utils.rounded(signalScore.lower) + "\t" + Utils.rounded(signalScore.upper);
            limitRange += ", s=" + Utils.rounded(signalScore.lower) + "-" + Utils.rounded(signalScore.upper);
        } else {
            signalScore = null;
            resultsPrefix3 += "\t0\t0";
            lowerSignalFactor = signalFactor = 0;
        }
        // Store all the results
        final ArrayList<MultiPathFitResults> results = new ArrayList<MultiPathFitResults>(BenchmarkSpotFit.fitResults.size());
        final List<MultiPathFitResults> syncResults = Collections.synchronizedList(results);
        // This could be multi-threaded ...
        final int nThreads = getThreads(BenchmarkSpotFit.fitResults.size());
        final BlockingQueue<Job> jobs = new ArrayBlockingQueue<Job>(nThreads * 2);
        final List<FitResultsWorker> workers = new LinkedList<FitResultsWorker>();
        final List<Thread> threads = new LinkedList<Thread>();
        final AtomicInteger uniqueId = new AtomicInteger();
        CoordinateStore coordinateStore = createCoordinateStore();
        for (int i = 0; i < nThreads; i++) {
            final FitResultsWorker worker = new FitResultsWorker(jobs, syncResults, matchDistance, distanceScore, signalScore, uniqueId, coordinateStore.newInstance());
            final Thread t = new Thread(worker);
            workers.add(worker);
            threads.add(t);
            t.start();
        }
        totalProgress = BenchmarkSpotFit.fitResults.size();
        stepProgress = Utils.getProgressInterval(totalProgress);
        progress = 0;
        BenchmarkSpotFit.fitResults.forEachEntry(new TIntObjectProcedure<FilterCandidates>() {

            public boolean execute(int a, FilterCandidates b) {
                put(jobs, new Job(a, b));
                return true;
            }
        });
        // Finish all the worker threads by passing in a null job
        for (int i = 0; i < threads.size(); i++) {
            put(jobs, new Job(0, null));
        }
        // Wait for all to finish
        for (int i = 0; i < threads.size(); i++) {
            try {
                threads.get(i).join();
                FitResultsWorker worker = workers.get(i);
                matches += worker.matches;
                fittedResults += worker.included;
                totalResults += worker.total;
                notDuplicateCount += worker.notDuplicateCount;
                newResultCount += worker.newResultCount;
                nActual += worker.includedActual;
                if (i == 0) {
                    depthStats = worker.depthStats;
                    depthFitStats = worker.depthFitStats;
                    signalFactorStats = worker.signalFactorStats;
                    distanceStats = worker.distanceStats;
                } else {
                    depthStats.add(worker.depthStats);
                    depthFitStats.add(worker.depthFitStats);
                    signalFactorStats.add(worker.signalFactorStats);
                    distanceStats.add(worker.distanceStats);
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        threads.clear();
        IJ.showProgress(1);
        IJ.showStatus("");
        maxUniqueId = uniqueId.get();
        resultsList = results.toArray(new MultiPathFitResults[results.size()]);
        Arrays.sort(resultsList, new Comparator<MultiPathFitResults>() {

            public int compare(MultiPathFitResults o1, MultiPathFitResults o2) {
                return o1.frame - o2.frame;
            }
        });
    }
    // In case a previous run was interrupted
    if (resultsList != null) {
        MultiPathFilter.resetValidationFlag(resultsList);
    }
    return resultsList;
}
Also used : ArrayList(java.util.ArrayList) CoordinateStore(gdsc.smlm.results.filter.CoordinateStore) GridCoordinateStore(gdsc.smlm.results.filter.GridCoordinateStore) LinkedList(java.util.LinkedList) ArrayBlockingQueue(java.util.concurrent.ArrayBlockingQueue) AtomicInteger(java.util.concurrent.atomic.AtomicInteger) RampedScore(gdsc.core.utils.RampedScore) MultiPathFitResults(gdsc.smlm.results.filter.MultiPathFitResults) FilterCandidates(gdsc.smlm.ij.plugins.BenchmarkSpotFit.FilterCandidates) FilterSettings(gdsc.smlm.ij.settings.FilterSettings) Settings(gdsc.core.utils.Settings) GlobalSettings(gdsc.smlm.ij.settings.GlobalSettings)

Example 2 with MultiPathFitResults

use of gdsc.smlm.results.filter.MultiPathFitResults in project GDSC-SMLM by aherbert.

the class BenchmarkSpotFit method summariseResults.

private void summariseResults(TIntObjectHashMap<FilterCandidates> filterCandidates, long runTime, final PreprocessedPeakResult[] preprocessedPeakResults, int nUniqueIDs) {
    createTable();
    // Summarise the fitting results. N fits, N failures. 
    // Optimal match statistics if filtering is perfect (since fitting is not perfect).
    StoredDataStatistics distanceStats = new StoredDataStatistics();
    StoredDataStatistics depthStats = new StoredDataStatistics();
    // Get stats for all fitted results and those that match 
    // Signal, SNR, Width, xShift, yShift, Precision
    createFilterCriteria();
    StoredDataStatistics[][] stats = new StoredDataStatistics[3][filterCriteria.length];
    for (int i = 0; i < stats.length; i++) for (int j = 0; j < stats[i].length; j++) stats[i][j] = new StoredDataStatistics();
    final double nmPerPixel = simulationParameters.a;
    double tp = 0, fp = 0;
    int failcTP = 0, failcFP = 0;
    int cTP = 0, cFP = 0;
    int[] singleStatus = null, multiStatus = null, doubletStatus = null, multiDoubletStatus = null;
    singleStatus = new int[FitStatus.values().length];
    multiStatus = new int[singleStatus.length];
    doubletStatus = new int[singleStatus.length];
    multiDoubletStatus = new int[singleStatus.length];
    // Easier to materialise the values since we have a lot of non final variables to manipulate
    final int[] frames = new int[filterCandidates.size()];
    final FilterCandidates[] candidates = new FilterCandidates[filterCandidates.size()];
    final int[] counter = new int[1];
    filterCandidates.forEachEntry(new TIntObjectProcedure<FilterCandidates>() {

        public boolean execute(int a, FilterCandidates b) {
            frames[counter[0]] = a;
            candidates[counter[0]] = b;
            counter[0]++;
            return true;
        }
    });
    for (FilterCandidates result : candidates) {
        // Count the number of fit results that matched (tp) and did not match (fp)
        tp += result.tp;
        fp += result.fp;
        for (int i = 0; i < result.fitResult.length; i++) {
            if (result.spots[i].match)
                cTP++;
            else
                cFP++;
            final MultiPathFitResult fitResult = result.fitResult[i];
            if (singleStatus != null && result.spots[i].match) {
                // Debugging reasons for fit failure
                addStatus(singleStatus, fitResult.getSingleFitResult());
                addStatus(multiStatus, fitResult.getMultiFitResult());
                addStatus(doubletStatus, fitResult.getDoubletFitResult());
                addStatus(multiDoubletStatus, fitResult.getMultiDoubletFitResult());
            }
            if (noMatch(fitResult)) {
                if (result.spots[i].match)
                    failcTP++;
                else
                    failcFP++;
            }
            // We have multi-path results.
            // We want statistics for:
            // [0] all fitted spots
            // [1] fitted spots that match a result
            // [2] fitted spots that do not match a result
            addToStats(fitResult.getSingleFitResult(), stats);
            addToStats(fitResult.getMultiFitResult(), stats);
            addToStats(fitResult.getDoubletFitResult(), stats);
            addToStats(fitResult.getMultiDoubletFitResult(), stats);
        }
        // Statistics on spots that fit an actual result
        for (int i = 0; i < result.match.length; i++) {
            if (!result.match[i].isFitResult())
                // For now just ignore the candidates that matched
                continue;
            FitMatch fitMatch = (FitMatch) result.match[i];
            distanceStats.add(fitMatch.d * nmPerPixel);
            depthStats.add(fitMatch.z * nmPerPixel);
        }
    }
    // Store data for computing correlation
    double[] i1 = new double[depthStats.getN()];
    double[] i2 = new double[i1.length];
    double[] is = new double[i1.length];
    int ci = 0;
    for (FilterCandidates result : candidates) {
        for (int i = 0; i < result.match.length; i++) {
            if (!result.match[i].isFitResult())
                // For now just ignore the candidates that matched
                continue;
            FitMatch fitMatch = (FitMatch) result.match[i];
            ScoredSpot spot = result.spots[fitMatch.i];
            i1[ci] = fitMatch.predictedSignal;
            i2[ci] = fitMatch.actualSignal;
            is[ci] = spot.spot.intensity;
            ci++;
        }
    }
    // We want to compute the Jaccard against the spot metric
    // Filter the results using the multi-path filter
    ArrayList<MultiPathFitResults> multiPathResults = new ArrayList<MultiPathFitResults>(filterCandidates.size());
    for (int i = 0; i < frames.length; i++) {
        int frame = frames[i];
        MultiPathFitResult[] multiPathFitResults = candidates[i].fitResult;
        int totalCandidates = candidates[i].spots.length;
        int nActual = actualCoordinates.get(frame).size();
        multiPathResults.add(new MultiPathFitResults(frame, multiPathFitResults, totalCandidates, nActual));
    }
    // Score the results and count the number returned
    List<FractionalAssignment[]> assignments = new ArrayList<FractionalAssignment[]>();
    final TIntHashSet set = new TIntHashSet(nUniqueIDs);
    FractionScoreStore scoreStore = new FractionScoreStore() {

        public void add(int uniqueId) {
            set.add(uniqueId);
        }
    };
    MultiPathFitResults[] multiResults = multiPathResults.toArray(new MultiPathFitResults[multiPathResults.size()]);
    // Filter with no filter
    MultiPathFilter mpf = new MultiPathFilter(new SignalFilter(0), null, multiFilter.residualsThreshold);
    FractionClassificationResult fractionResult = mpf.fractionScoreSubset(multiResults, Integer.MAX_VALUE, this.results.size(), assignments, scoreStore, CoordinateStoreFactory.create(imp.getWidth(), imp.getHeight(), fitConfig.getDuplicateDistance()));
    double nPredicted = fractionResult.getTP() + fractionResult.getFP();
    final double[][] matchScores = new double[set.size()][];
    int count = 0;
    for (int i = 0; i < assignments.size(); i++) {
        FractionalAssignment[] a = assignments.get(i);
        if (a == null)
            continue;
        for (int j = 0; j < a.length; j++) {
            final PreprocessedPeakResult r = ((PeakFractionalAssignment) a[j]).peakResult;
            set.remove(r.getUniqueId());
            final double precision = Math.sqrt(r.getLocationVariance());
            final double signal = r.getSignal();
            final double snr = r.getSNR();
            final double width = r.getXSDFactor();
            final double xShift = r.getXRelativeShift2();
            final double yShift = r.getYRelativeShift2();
            // Since these two are combined for filtering and the max is what matters.
            final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
            final double eshift = Math.sqrt(xShift + yShift);
            final double[] score = new double[8];
            score[FILTER_SIGNAL] = signal;
            score[FILTER_SNR] = snr;
            score[FILTER_MIN_WIDTH] = width;
            score[FILTER_MAX_WIDTH] = width;
            score[FILTER_SHIFT] = shift;
            score[FILTER_ESHIFT] = eshift;
            score[FILTER_PRECISION] = precision;
            score[FILTER_PRECISION + 1] = a[j].getScore();
            matchScores[count++] = score;
        }
    }
    // Add the rest
    set.forEach(new CustomTIntProcedure(count) {

        public boolean execute(int uniqueId) {
            // This should not be null or something has gone wrong
            PreprocessedPeakResult r = preprocessedPeakResults[uniqueId];
            if (r == null)
                throw new RuntimeException("Missing result: " + uniqueId);
            final double precision = Math.sqrt(r.getLocationVariance());
            final double signal = r.getSignal();
            final double snr = r.getSNR();
            final double width = r.getXSDFactor();
            final double xShift = r.getXRelativeShift2();
            final double yShift = r.getYRelativeShift2();
            // Since these two are combined for filtering and the max is what matters.
            final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
            final double eshift = Math.sqrt(xShift + yShift);
            final double[] score = new double[8];
            score[FILTER_SIGNAL] = signal;
            score[FILTER_SNR] = snr;
            score[FILTER_MIN_WIDTH] = width;
            score[FILTER_MAX_WIDTH] = width;
            score[FILTER_SHIFT] = shift;
            score[FILTER_ESHIFT] = eshift;
            score[FILTER_PRECISION] = precision;
            matchScores[c++] = score;
            return true;
        }
    });
    // Debug the reasons the fit failed
    if (singleStatus != null) {
        String name = PeakFit.getSolverName(fitConfig);
        if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera())
            name += " Camera";
        System.out.println("Failure counts: " + name);
        printFailures("Single", singleStatus);
        printFailures("Multi", multiStatus);
        printFailures("Doublet", doubletStatus);
        printFailures("Multi doublet", multiDoubletStatus);
    }
    StringBuilder sb = new StringBuilder(300);
    // Add information about the simulation
    //(simulationParameters.minSignal + simulationParameters.maxSignal) * 0.5;
    final double signal = simulationParameters.signalPerFrame;
    final int n = results.size();
    sb.append(imp.getStackSize()).append("\t");
    final int w = imp.getWidth();
    final int h = imp.getHeight();
    sb.append(w).append("\t");
    sb.append(h).append("\t");
    sb.append(n).append("\t");
    double density = ((double) n / imp.getStackSize()) / (w * h) / (simulationParameters.a * simulationParameters.a / 1e6);
    sb.append(Utils.rounded(density)).append("\t");
    sb.append(Utils.rounded(signal)).append("\t");
    sb.append(Utils.rounded(simulationParameters.s)).append("\t");
    sb.append(Utils.rounded(simulationParameters.a)).append("\t");
    sb.append(Utils.rounded(simulationParameters.depth)).append("\t");
    sb.append(simulationParameters.fixedDepth).append("\t");
    sb.append(Utils.rounded(simulationParameters.gain)).append("\t");
    sb.append(Utils.rounded(simulationParameters.readNoise)).append("\t");
    sb.append(Utils.rounded(simulationParameters.b)).append("\t");
    sb.append(Utils.rounded(simulationParameters.b2)).append("\t");
    // Compute the noise
    double noise = simulationParameters.b2;
    if (simulationParameters.emCCD) {
        // The b2 parameter was computed without application of the EM-CCD noise factor of 2.
        //final double b2 = backgroundVariance + readVariance
        //                = simulationParameters.b + readVariance
        // This should be applied only to the background variance.
        final double readVariance = noise - simulationParameters.b;
        noise = simulationParameters.b * 2 + readVariance;
    }
    if (simulationParameters.fullSimulation) {
    // The total signal is spread over frames
    }
    sb.append(Utils.rounded(signal / Math.sqrt(noise))).append("\t");
    sb.append(Utils.rounded(simulationParameters.s / simulationParameters.a)).append("\t");
    sb.append(spotFilter.getDescription());
    // nP and nN is the fractional score of the spot candidates 
    addCount(sb, nP + nN);
    addCount(sb, nP);
    addCount(sb, nN);
    addCount(sb, fP);
    addCount(sb, fN);
    String name = PeakFit.getSolverName(fitConfig);
    if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera())
        name += " Camera";
    add(sb, name);
    add(sb, config.getFitting());
    resultPrefix = sb.toString();
    // Q. Should I add other fit configuration here?
    // The fraction of positive and negative candidates that were included
    add(sb, (100.0 * cTP) / nP);
    add(sb, (100.0 * cFP) / nN);
    // Score the fitting results compared to the original simulation.
    // Score the candidate selection:
    add(sb, cTP + cFP);
    add(sb, cTP);
    add(sb, cFP);
    // TP are all candidates that can be matched to a spot
    // FP are all candidates that cannot be matched to a spot
    // FN = The number of missed spots
    FractionClassificationResult m = new FractionClassificationResult(cTP, cFP, 0, simulationParameters.molecules - cTP);
    add(sb, m.getRecall());
    add(sb, m.getPrecision());
    add(sb, m.getF1Score());
    add(sb, m.getJaccard());
    // Score the fitting results:
    add(sb, failcTP);
    add(sb, failcFP);
    // TP are all fit results that can be matched to a spot
    // FP are all fit results that cannot be matched to a spot
    // FN = The number of missed spots
    add(sb, tp);
    add(sb, fp);
    m = new FractionClassificationResult(tp, fp, 0, simulationParameters.molecules - tp);
    add(sb, m.getRecall());
    add(sb, m.getPrecision());
    add(sb, m.getF1Score());
    add(sb, m.getJaccard());
    // Do it again but pretend we can perfectly filter all the false positives
    //add(sb, tp);
    m = new FractionClassificationResult(tp, 0, 0, simulationParameters.molecules - tp);
    // Recall is unchanged
    // Precision will be 100%
    add(sb, m.getF1Score());
    add(sb, m.getJaccard());
    // The mean may be subject to extreme outliers so use the median
    double median = distanceStats.getMedian();
    add(sb, median);
    WindowOrganiser wo = new WindowOrganiser();
    String label = String.format("Recall = %s. n = %d. Median = %s nm. SD = %s nm", Utils.rounded(m.getRecall()), distanceStats.getN(), Utils.rounded(median), Utils.rounded(distanceStats.getStandardDeviation()));
    int id = Utils.showHistogram(TITLE, distanceStats, "Match Distance (nm)", 0, 0, 0, label);
    if (Utils.isNewWindow())
        wo.add(id);
    median = depthStats.getMedian();
    add(sb, median);
    // Sort by spot intensity and produce correlation
    int[] indices = Utils.newArray(i1.length, 0, 1);
    if (showCorrelation)
        Sort.sort(indices, is, rankByIntensity);
    double[] r = (showCorrelation) ? new double[i1.length] : null;
    double[] sr = (showCorrelation) ? new double[i1.length] : null;
    double[] rank = (showCorrelation) ? new double[i1.length] : null;
    ci = 0;
    FastCorrelator fastCorrelator = new FastCorrelator();
    ArrayList<Ranking> pc1 = new ArrayList<Ranking>();
    ArrayList<Ranking> pc2 = new ArrayList<Ranking>();
    for (int ci2 : indices) {
        fastCorrelator.add((long) Math.round(i1[ci2]), (long) Math.round(i2[ci2]));
        pc1.add(new Ranking(i1[ci2], ci));
        pc2.add(new Ranking(i2[ci2], ci));
        if (showCorrelation) {
            r[ci] = fastCorrelator.getCorrelation();
            sr[ci] = Correlator.correlation(rank(pc1), rank(pc2));
            if (rankByIntensity)
                rank[ci] = is[0] - is[ci];
            else
                rank[ci] = ci;
        }
        ci++;
    }
    final double pearsonCorr = fastCorrelator.getCorrelation();
    final double rankedCorr = Correlator.correlation(rank(pc1), rank(pc2));
    // Get the regression
    SimpleRegression regression = new SimpleRegression(false);
    for (int i = 0; i < pc1.size(); i++) regression.addData(pc1.get(i).value, pc2.get(i).value);
    //final double intercept = regression.getIntercept();
    final double slope = regression.getSlope();
    if (showCorrelation) {
        String title = TITLE + " Intensity";
        Plot plot = new Plot(title, "Candidate", "Spot");
        double[] limits1 = Maths.limits(i1);
        double[] limits2 = Maths.limits(i2);
        plot.setLimits(limits1[0], limits1[1], limits2[0], limits2[1]);
        label = String.format("Correlation=%s; Ranked=%s; Slope=%s", Utils.rounded(pearsonCorr), Utils.rounded(rankedCorr), Utils.rounded(slope));
        plot.addLabel(0, 0, label);
        plot.setColor(Color.red);
        plot.addPoints(i1, i2, Plot.DOT);
        if (slope > 1)
            plot.drawLine(limits1[0], limits1[0] * slope, limits1[1], limits1[1] * slope);
        else
            plot.drawLine(limits2[0] / slope, limits2[0], limits2[1] / slope, limits2[1]);
        PlotWindow pw = Utils.display(title, plot);
        if (Utils.isNewWindow())
            wo.add(pw);
        title = TITLE + " Correlation";
        plot = new Plot(title, "Spot Rank", "Correlation");
        double[] xlimits = Maths.limits(rank);
        double[] ylimits = Maths.limits(r);
        ylimits = Maths.limits(ylimits, sr);
        plot.setLimits(xlimits[0], xlimits[1], ylimits[0], ylimits[1]);
        plot.setColor(Color.red);
        plot.addPoints(rank, r, Plot.LINE);
        plot.setColor(Color.blue);
        plot.addPoints(rank, sr, Plot.LINE);
        plot.setColor(Color.black);
        plot.addLabel(0, 0, label);
        pw = Utils.display(title, plot);
        if (Utils.isNewWindow())
            wo.add(pw);
    }
    add(sb, pearsonCorr);
    add(sb, rankedCorr);
    add(sb, slope);
    label = String.format("n = %d. Median = %s nm", depthStats.getN(), Utils.rounded(median));
    id = Utils.showHistogram(TITLE, depthStats, "Match Depth (nm)", 0, 1, 0, label);
    if (Utils.isNewWindow())
        wo.add(id);
    // Plot histograms of the stats on the same window
    double[] lower = new double[filterCriteria.length];
    double[] upper = new double[lower.length];
    min = new double[lower.length];
    max = new double[lower.length];
    for (int i = 0; i < stats[0].length; i++) {
        double[] limits = showDoubleHistogram(stats, i, wo, matchScores, nPredicted);
        lower[i] = limits[0];
        upper[i] = limits[1];
        min[i] = limits[2];
        max[i] = limits[3];
    }
    // Reconfigure some of the range limits
    // Make this a bit bigger
    upper[FILTER_SIGNAL] *= 2;
    // Make this a bit bigger
    upper[FILTER_SNR] *= 2;
    double factor = 0.25;
    if (lower[FILTER_MIN_WIDTH] != 0)
        // (assuming lower is less than 1)
        upper[FILTER_MIN_WIDTH] = 1 - Math.max(0, factor * (1 - lower[FILTER_MIN_WIDTH]));
    if (upper[FILTER_MIN_WIDTH] != 0)
        // (assuming upper is more than 1)
        lower[FILTER_MAX_WIDTH] = 1 + Math.max(0, factor * (upper[FILTER_MAX_WIDTH] - 1));
    // Round the ranges
    final double[] interval = new double[stats[0].length];
    interval[FILTER_SIGNAL] = SignalFilter.DEFAULT_INCREMENT;
    interval[FILTER_SNR] = SNRFilter.DEFAULT_INCREMENT;
    interval[FILTER_MIN_WIDTH] = WidthFilter2.DEFAULT_MIN_INCREMENT;
    interval[FILTER_MAX_WIDTH] = WidthFilter.DEFAULT_INCREMENT;
    interval[FILTER_SHIFT] = ShiftFilter.DEFAULT_INCREMENT;
    interval[FILTER_ESHIFT] = EShiftFilter.DEFAULT_INCREMENT;
    interval[FILTER_PRECISION] = PrecisionFilter.DEFAULT_INCREMENT;
    interval[FILTER_ITERATIONS] = 0.1;
    interval[FILTER_EVALUATIONS] = 0.1;
    // Create a range increment
    double[] increment = new double[lower.length];
    for (int i = 0; i < increment.length; i++) {
        lower[i] = Maths.floor(lower[i], interval[i]);
        upper[i] = Maths.ceil(upper[i], interval[i]);
        double range = upper[i] - lower[i];
        // Allow clipping if the range is small compared to the min increment
        double multiples = range / interval[i];
        // Use 8 multiples for the equivalent of +/- 4 steps around the centre
        if (multiples < 8) {
            multiples = Math.ceil(multiples);
        } else
            multiples = 8;
        increment[i] = Maths.ceil(range / multiples, interval[i]);
        if (i == FILTER_MIN_WIDTH)
            // Requires clipping based on the upper limit
            lower[i] = upper[i] - increment[i] * multiples;
        else
            upper[i] = lower[i] + increment[i] * multiples;
    }
    for (int i = 0; i < stats[0].length; i++) {
        lower[i] = Maths.round(lower[i]);
        upper[i] = Maths.round(upper[i]);
        min[i] = Maths.round(min[i]);
        max[i] = Maths.round(max[i]);
        increment[i] = Maths.round(increment[i]);
        sb.append("\t").append(min[i]).append(':').append(lower[i]).append('-').append(upper[i]).append(':').append(max[i]);
    }
    // Disable some filters
    increment[FILTER_SIGNAL] = Double.POSITIVE_INFINITY;
    //increment[FILTER_SHIFT] = Double.POSITIVE_INFINITY;
    increment[FILTER_ESHIFT] = Double.POSITIVE_INFINITY;
    wo.tile();
    sb.append("\t").append(Utils.timeToString(runTime / 1000000.0));
    summaryTable.append(sb.toString());
    if (saveFilterRange) {
        GlobalSettings gs = SettingsManager.loadSettings();
        FilterSettings filterSettings = gs.getFilterSettings();
        String filename = (silent) ? filterSettings.filterSetFilename : Utils.getFilename("Filter_range_file", filterSettings.filterSetFilename);
        if (filename == null)
            return;
        // Remove extension to store the filename
        filename = Utils.replaceExtension(filename, ".xml");
        filterSettings.filterSetFilename = filename;
        // Create a filter set using the ranges
        ArrayList<Filter> filters = new ArrayList<Filter>(3);
        filters.add(new MultiFilter2(lower[0], (float) lower[1], lower[2], lower[3], lower[4], lower[5], lower[6]));
        filters.add(new MultiFilter2(upper[0], (float) upper[1], upper[2], upper[3], upper[4], upper[5], upper[6]));
        filters.add(new MultiFilter2(increment[0], (float) increment[1], increment[2], increment[3], increment[4], increment[5], increment[6]));
        if (saveFilters(filename, filters))
            SettingsManager.saveSettings(gs);
        // Create a filter set using the min/max and the initial bounds.
        // Set sensible limits
        min[FILTER_SIGNAL] = Math.max(min[FILTER_SIGNAL], 30);
        max[FILTER_PRECISION] = Math.min(max[FILTER_PRECISION], 100);
        // Commented this out so that the 4-set filters are the same as the 3-set filters.
        // The difference leads to differences when optimising.
        //			// Use half the initial bounds (hoping this is a good starting guess for the optimum)
        //			final boolean[] limitToLower = new boolean[min.length];
        //			limitToLower[FILTER_SIGNAL] = true;
        //			limitToLower[FILTER_SNR] = true;
        //			limitToLower[FILTER_MIN_WIDTH] = true;
        //			limitToLower[FILTER_MAX_WIDTH] = false;
        //			limitToLower[FILTER_SHIFT] = false;
        //			limitToLower[FILTER_ESHIFT] = false;
        //			limitToLower[FILTER_PRECISION] = true;
        //			for (int i = 0; i < limitToLower.length; i++)
        //			{
        //				final double range = (upper[i] - lower[i]) / 2;
        //				if (limitToLower[i])
        //					upper[i] = lower[i] + range;
        //				else
        //					lower[i] = upper[i] - range;
        //			}
        filters = new ArrayList<Filter>(4);
        filters.add(new MultiFilter2(min[0], (float) min[1], min[2], min[3], min[4], min[5], min[6]));
        filters.add(new MultiFilter2(lower[0], (float) lower[1], lower[2], lower[3], lower[4], lower[5], lower[6]));
        filters.add(new MultiFilter2(upper[0], (float) upper[1], upper[2], upper[3], upper[4], upper[5], upper[6]));
        filters.add(new MultiFilter2(max[0], (float) max[1], max[2], max[3], max[4], max[5], max[6]));
        saveFilters(Utils.replaceExtension(filename, ".4.xml"), filters);
    }
}
Also used : ArrayList(java.util.ArrayList) TIntHashSet(gnu.trove.set.hash.TIntHashSet) MultiPathFitResult(gdsc.smlm.results.filter.MultiPathFitResult) FractionalAssignment(gdsc.core.match.FractionalAssignment) PeakFractionalAssignment(gdsc.smlm.results.filter.PeakFractionalAssignment) ImmutableFractionalAssignment(gdsc.core.match.ImmutableFractionalAssignment) FractionClassificationResult(gdsc.core.match.FractionClassificationResult) BasePreprocessedPeakResult(gdsc.smlm.results.filter.BasePreprocessedPeakResult) PreprocessedPeakResult(gdsc.smlm.results.filter.PreprocessedPeakResult) SignalFilter(gdsc.smlm.results.filter.SignalFilter) FilterSettings(gdsc.smlm.ij.settings.FilterSettings) ScoredSpot(gdsc.smlm.ij.plugins.BenchmarkSpotFilter.ScoredSpot) FastCorrelator(gdsc.core.utils.FastCorrelator) Plot(ij.gui.Plot) StoredDataStatistics(gdsc.core.utils.StoredDataStatistics) PlotWindow(ij.gui.PlotWindow) GlobalSettings(gdsc.smlm.ij.settings.GlobalSettings) WindowOrganiser(ij.plugin.WindowOrganiser) PeakResultPoint(gdsc.smlm.ij.plugins.ResultsMatchCalculator.PeakResultPoint) BasePoint(gdsc.core.match.BasePoint) PeakFractionalAssignment(gdsc.smlm.results.filter.PeakFractionalAssignment) FractionScoreStore(gdsc.smlm.results.filter.MultiPathFilter.FractionScoreStore) SimpleRegression(org.apache.commons.math3.stat.regression.SimpleRegression) SignalFilter(gdsc.smlm.results.filter.SignalFilter) DirectFilter(gdsc.smlm.results.filter.DirectFilter) ShiftFilter(gdsc.smlm.results.filter.ShiftFilter) PrecisionFilter(gdsc.smlm.results.filter.PrecisionFilter) Filter(gdsc.smlm.results.filter.Filter) EShiftFilter(gdsc.smlm.results.filter.EShiftFilter) WidthFilter(gdsc.smlm.results.filter.WidthFilter) SNRFilter(gdsc.smlm.results.filter.SNRFilter) MultiPathFilter(gdsc.smlm.results.filter.MultiPathFilter) MaximaSpotFilter(gdsc.smlm.filters.MaximaSpotFilter) MultiFilter2(gdsc.smlm.results.filter.MultiFilter2) MultiPathFitResults(gdsc.smlm.results.filter.MultiPathFitResults) MultiPathFilter(gdsc.smlm.results.filter.MultiPathFilter)

Aggregations

FilterSettings (gdsc.smlm.ij.settings.FilterSettings)2 GlobalSettings (gdsc.smlm.ij.settings.GlobalSettings)2 MultiPathFitResults (gdsc.smlm.results.filter.MultiPathFitResults)2 ArrayList (java.util.ArrayList)2 BasePoint (gdsc.core.match.BasePoint)1 FractionClassificationResult (gdsc.core.match.FractionClassificationResult)1 FractionalAssignment (gdsc.core.match.FractionalAssignment)1 ImmutableFractionalAssignment (gdsc.core.match.ImmutableFractionalAssignment)1 FastCorrelator (gdsc.core.utils.FastCorrelator)1 RampedScore (gdsc.core.utils.RampedScore)1 Settings (gdsc.core.utils.Settings)1 StoredDataStatistics (gdsc.core.utils.StoredDataStatistics)1 MaximaSpotFilter (gdsc.smlm.filters.MaximaSpotFilter)1 ScoredSpot (gdsc.smlm.ij.plugins.BenchmarkSpotFilter.ScoredSpot)1 FilterCandidates (gdsc.smlm.ij.plugins.BenchmarkSpotFit.FilterCandidates)1 PeakResultPoint (gdsc.smlm.ij.plugins.ResultsMatchCalculator.PeakResultPoint)1 BasePreprocessedPeakResult (gdsc.smlm.results.filter.BasePreprocessedPeakResult)1 CoordinateStore (gdsc.smlm.results.filter.CoordinateStore)1 DirectFilter (gdsc.smlm.results.filter.DirectFilter)1 EShiftFilter (gdsc.smlm.results.filter.EShiftFilter)1