use of gdsc.smlm.fitting.FitResult in project GDSC-SMLM by aherbert.
the class GaussianFit method fit.
/**
* Fits a single 2D Gaussian to the data. The fit is initialised at the highest
* value and then optimised.
* <p>
* Data must be arranged in yx block order, i.e. height rows of width.
* <p>
* The angle parameter is only returned if using elliptical Gaussian fitting.
* <p>
* Note: The fit coordinates should be offset by 0.5 if the input data represents pixels
*
* @return Array containing the fitted curve data: Background, Amplitude, PosX, PosY, StdDevX, StdDevY, Angle. Null
* if no fit is possible.
*/
public double[] fit(float[] data, int width, int height) {
if (data == null || data.length != width * height)
return null;
// Get the limits
float max = Float.MIN_VALUE;
int maxIndex = -1;
for (int i = data.length; i-- > 0; ) {
float f = data[i];
if (max < f) {
max = f;
maxIndex = i;
}
}
if (maxIndex < 0) {
return null;
}
Gaussian2DFitter gf = createGaussianFitter(false);
FitResult fitResult = gf.fit(Utils.toDouble(data), width, height, new int[] { maxIndex });
if (fitResult.getStatus() == FitStatus.OK) {
chiSquared = fitResult.getError();
double[] params = fitResult.getParameters();
// Check bounds
if (params[3] < 0 || params[3] >= width || params[4] < 0 || params[4] >= height)
return null;
// Re-arrange order for backwards compatibility with old code.
return new double[] { params[0], params[1], params[3], params[4], Gaussian2DFitter.fwhm2sd(params[5]), Gaussian2DFitter.fwhm2sd(params[6]), params[2] };
}
return null;
}
use of gdsc.smlm.fitting.FitResult in project GDSC-SMLM by aherbert.
the class SpotAnalysis method updateCurrentSlice.
private void updateCurrentSlice(int slice) {
if (slice != currentSlice) {
currentSlice = slice;
double signal = getSignal(slice);
double noise = smoothSd[slice - 1];
currentLabel.setText(String.format("Frame %d: Signal = %s, SNR = %s", slice, Utils.rounded(signal, 4), Utils.rounded(signal / noise, 3)));
drawProfiles();
// Fit the PSF using a Gaussian
float[] data2 = (float[]) rawImp.getImageStack().getProcessor(slice).getPixels();
double[] data = Utils.toDouble(data2);
FitConfiguration fitConfiguration = new FitConfiguration();
fitConfiguration.setFitFunction(FitFunction.FIXED);
fitConfiguration.setBackgroundFitting(true);
fitConfiguration.setSignalStrength(0);
fitConfiguration.setCoordinateShift(rawImp.getWidth() / 4.0f);
fitConfiguration.setComputeResiduals(false);
fitConfiguration.setComputeDeviations(false);
Gaussian2DFitter gf = new Gaussian2DFitter(fitConfiguration);
double[] params = new double[7];
double psfWidth = Double.parseDouble(widthTextField.getText());
params[Gaussian2DFunction.BACKGROUND] = smoothMean[slice - 1];
params[Gaussian2DFunction.SIGNAL] = (gain * signal);
params[Gaussian2DFunction.X_POSITION] = rawImp.getWidth() / 2.0f;
params[Gaussian2DFunction.Y_POSITION] = rawImp.getHeight() / 2.0f;
params[Gaussian2DFunction.X_SD] = params[Gaussian2DFunction.Y_SD] = psfWidth;
FitResult fitResult = gf.fit(data, rawImp.getWidth(), rawImp.getHeight(), 1, params, new boolean[1]);
if (fitResult.getStatus() == FitStatus.OK) {
params = fitResult.getParameters();
final double spotSignal = params[Gaussian2DFunction.SIGNAL] / gain;
rawFittedLabel.setText(String.format("Raw fit: Signal = %s, SNR = %s", Utils.rounded(spotSignal, 4), Utils.rounded(spotSignal / noise, 3)));
ImageROIPainter.addRoi(rawImp, slice, new PointRoi(params[Gaussian2DFunction.X_POSITION], params[Gaussian2DFunction.Y_POSITION]));
} else {
rawFittedLabel.setText("");
rawImp.setOverlay(null);
}
// Fit the PSF using a Gaussian
if (blurImp == null)
return;
data2 = (float[]) blurImp.getImageStack().getProcessor(slice).getPixels();
data = Utils.toDouble(data2);
params = new double[7];
//float psfWidth = Float.parseFloat(widthTextField.getText());
params[Gaussian2DFunction.BACKGROUND] = (float) smoothMean[slice - 1];
params[Gaussian2DFunction.SIGNAL] = (float) (gain * signal);
params[Gaussian2DFunction.X_POSITION] = rawImp.getWidth() / 2.0f;
params[Gaussian2DFunction.Y_POSITION] = rawImp.getHeight() / 2.0f;
params[Gaussian2DFunction.X_SD] = params[Gaussian2DFunction.Y_SD] = psfWidth;
fitResult = gf.fit(data, rawImp.getWidth(), rawImp.getHeight(), 1, params, new boolean[1]);
if (fitResult.getStatus() == FitStatus.OK) {
params = fitResult.getParameters();
final double spotSignal = params[Gaussian2DFunction.SIGNAL] / gain;
blurFittedLabel.setText(String.format("Blur fit: Signal = %s, SNR = %s", Utils.rounded(spotSignal, 4), Utils.rounded(spotSignal / noise, 3)));
ImageROIPainter.addRoi(blurImp, slice, new PointRoi(params[Gaussian2DFunction.X_POSITION], params[Gaussian2DFunction.Y_POSITION]));
} else {
blurFittedLabel.setText("");
blurImp.setOverlay(null);
}
}
}
use of gdsc.smlm.fitting.FitResult in project GDSC-SMLM by aherbert.
the class TraceMolecules method fitTraces.
private void fitTraces(MemoryPeakResults results, Trace[] traces) {
// Check if the original image is open and the fit configuration can be extracted
ImageSource source = results.getSource();
if (source == null)
return;
if (!source.open())
return;
FitEngineConfiguration config = (FitEngineConfiguration) XmlUtils.fromXML(results.getConfiguration());
if (config == null)
return;
// Show a dialog asking if the traces should be refit
ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
gd.addMessage("Do you want to fit the traces as a single peak using a combined image?");
gd.addCheckbox("Fit_closest_to_centroid", !fitOnlyCentroid);
gd.addSlider("Distance_threshold", 0.01, 3, distanceThreshold);
gd.addSlider("Expansion_factor", 1, 4.5, expansionFactor);
// Allow fitting settings to be adjusted
FitConfiguration fitConfig = config.getFitConfiguration();
gd.addMessage("--- Gaussian fitting ---");
String[] filterTypes = SettingsManager.getNames((Object[]) DataFilterType.values());
gd.addChoice("Spot_filter_type", filterTypes, filterTypes[config.getDataFilterType().ordinal()]);
String[] filterNames = SettingsManager.getNames((Object[]) DataFilter.values());
gd.addChoice("Spot_filter", filterNames, filterNames[config.getDataFilter(0).ordinal()]);
gd.addSlider("Smoothing", 0, 2.5, config.getSmooth(0));
gd.addSlider("Search_width", 0.5, 2.5, config.getSearch());
gd.addSlider("Border", 0.5, 2.5, config.getBorder());
gd.addSlider("Fitting_width", 2, 4.5, config.getFitting());
String[] solverNames = SettingsManager.getNames((Object[]) FitSolver.values());
gd.addChoice("Fit_solver", solverNames, solverNames[fitConfig.getFitSolver().ordinal()]);
String[] functionNames = SettingsManager.getNames((Object[]) FitFunction.values());
gd.addChoice("Fit_function", functionNames, functionNames[fitConfig.getFitFunction().ordinal()]);
String[] criteriaNames = SettingsManager.getNames((Object[]) FitCriteria.values());
gd.addChoice("Fit_criteria", criteriaNames, criteriaNames[fitConfig.getFitCriteria().ordinal()]);
gd.addNumericField("Significant_digits", fitConfig.getSignificantDigits(), 0);
gd.addNumericField("Coord_delta", fitConfig.getDelta(), 4);
gd.addNumericField("Lambda", fitConfig.getLambda(), 4);
gd.addNumericField("Max_iterations", fitConfig.getMaxIterations(), 0);
gd.addNumericField("Fail_limit", config.getFailuresLimit(), 0);
gd.addCheckbox("Include_neighbours", config.isIncludeNeighbours());
gd.addSlider("Neighbour_height", 0.01, 1, config.getNeighbourHeightThreshold());
gd.addSlider("Residuals_threshold", 0.01, 1, config.getResidualsThreshold());
//gd.addSlider("Duplicate_distance", 0, 1.5, fitConfig.getDuplicateDistance());
gd.addMessage("--- Peak filtering ---\nDiscard fits that shift; are too low; or expand/contract");
gd.addCheckbox("Smart_filter", fitConfig.isSmartFilter());
gd.addCheckbox("Disable_simple_filter", fitConfig.isDisableSimpleFilter());
gd.addSlider("Shift_factor", 0.01, 2, fitConfig.getCoordinateShiftFactor());
gd.addNumericField("Signal_strength", fitConfig.getSignalStrength(), 2);
gd.addNumericField("Min_photons", fitConfig.getMinPhotons(), 0);
gd.addSlider("Min_width_factor", 0, 0.99, fitConfig.getMinWidthFactor());
gd.addSlider("Width_factor", 1.01, 5, fitConfig.getWidthFactor());
gd.addNumericField("Precision", fitConfig.getPrecisionThreshold(), 2);
gd.addCheckbox("Debug_failures", debugFailures);
gd.showDialog();
if (!gd.wasOKed()) {
source.close();
return;
}
// Get parameters for the fit
fitOnlyCentroid = !gd.getNextBoolean();
distanceThreshold = (float) gd.getNextNumber();
expansionFactor = (float) gd.getNextNumber();
config.setDataFilterType(gd.getNextChoiceIndex());
config.setDataFilter(gd.getNextChoiceIndex(), Math.abs(gd.getNextNumber()), 0);
config.setSearch(gd.getNextNumber());
config.setBorder(gd.getNextNumber());
config.setFitting(gd.getNextNumber());
fitConfig.setFitSolver(gd.getNextChoiceIndex());
fitConfig.setFitFunction(gd.getNextChoiceIndex());
fitConfig.setFitCriteria(gd.getNextChoiceIndex());
fitConfig.setSignificantDigits((int) gd.getNextNumber());
fitConfig.setDelta(gd.getNextNumber());
fitConfig.setLambda(gd.getNextNumber());
fitConfig.setMaxIterations((int) gd.getNextNumber());
config.setFailuresLimit((int) gd.getNextNumber());
config.setIncludeNeighbours(gd.getNextBoolean());
config.setNeighbourHeightThreshold(gd.getNextNumber());
config.setResidualsThreshold(gd.getNextNumber());
fitConfig.setSmartFilter(gd.getNextBoolean());
fitConfig.setDisableSimpleFilter(gd.getNextBoolean());
fitConfig.setCoordinateShiftFactor(gd.getNextNumber());
fitConfig.setSignalStrength(gd.getNextNumber());
fitConfig.setMinPhotons(gd.getNextNumber());
fitConfig.setMinWidthFactor(gd.getNextNumber());
fitConfig.setWidthFactor(gd.getNextNumber());
fitConfig.setPrecisionThreshold(gd.getNextNumber());
// Check arguments
try {
Parameters.isAboveZero("Distance threshold", distanceThreshold);
Parameters.isAbove("Expansion factor", expansionFactor, 1);
Parameters.isAboveZero("Search_width", config.getSearch());
Parameters.isAboveZero("Fitting_width", config.getFitting());
Parameters.isAboveZero("Significant digits", fitConfig.getSignificantDigits());
Parameters.isAboveZero("Delta", fitConfig.getDelta());
Parameters.isAboveZero("Lambda", fitConfig.getLambda());
Parameters.isAboveZero("Max iterations", fitConfig.getMaxIterations());
Parameters.isPositive("Failures limit", config.getFailuresLimit());
Parameters.isPositive("Neighbour height threshold", config.getNeighbourHeightThreshold());
Parameters.isPositive("Residuals threshold", config.getResidualsThreshold());
Parameters.isPositive("Coordinate Shift factor", fitConfig.getCoordinateShiftFactor());
Parameters.isPositive("Signal strength", fitConfig.getSignalStrength());
Parameters.isPositive("Min photons", fitConfig.getMinPhotons());
Parameters.isPositive("Min width factor", fitConfig.getMinWidthFactor());
Parameters.isPositive("Width factor", fitConfig.getWidthFactor());
Parameters.isPositive("Precision threshold", fitConfig.getPrecisionThreshold());
} catch (IllegalArgumentException e) {
IJ.error(TITLE, e.getMessage());
source.close();
return;
}
debugFailures = gd.getNextBoolean();
if (!PeakFit.configureSmartFilter(globalSettings, filename))
return;
if (!PeakFit.configureDataFilter(globalSettings, filename, false))
return;
if (!PeakFit.configureFitSolver(globalSettings, filename, false))
return;
// Adjust settings for a single maxima
config.setIncludeNeighbours(false);
fitConfig.setDuplicateDistance(0);
// Create a fit engine
MemoryPeakResults refitResults = new MemoryPeakResults();
refitResults.copySettings(results);
refitResults.setName(results.getName() + " Trace Fit");
refitResults.setSortAfterEnd(true);
refitResults.begin();
// No border since we know where the peaks are and we must not miss them due to truncated searching
FitEngine engine = new FitEngine(config, refitResults, Prefs.getThreads(), FitQueue.BLOCKING);
// Either : Only fit the centroid
// or : Extract a bigger region, allowing all fits to run as normal and then
// find the correct spot using Euclidian distance.
// Set up the limits
final double stdDev = FastMath.max(fitConfig.getInitialPeakStdDev0(), fitConfig.getInitialPeakStdDev1());
float fitWidth = (float) (stdDev * config.getFitting() * ((fitOnlyCentroid) ? 1 : expansionFactor));
IJ.showStatus("Refitting traces ...");
List<JobItem> jobItems = new ArrayList<JobItem>(traces.length);
int singles = 0;
int fitted = 0;
for (int n = 0; n < traces.length; n++) {
Trace trace = traces[n];
if (n % 32 == 0)
IJ.showProgress(n, traces.length);
// Skip traces with one peak
if (trace.size() == 1) {
singles++;
// Use the synchronized method to avoid thread clashes with the FitEngine
refitResults.addSync(trace.getHead());
continue;
}
Rectangle bounds = new Rectangle();
double[] combinedNoise = new double[1];
float[] data = buildCombinedImage(source, trace, fitWidth, bounds, combinedNoise, false);
if (data == null)
continue;
// Fit the combined image
FitParameters params = new FitParameters();
params.noise = (float) combinedNoise[0];
float[] centre = trace.getCentroid();
if (fitOnlyCentroid) {
int newX = (int) Math.round(centre[0]) - bounds.x;
int newY = (int) Math.round(centre[1]) - bounds.y;
params.maxIndices = new int[] { newY * bounds.width + newX };
} else {
params.filter = new ArrayList<float[]>();
params.filter.add(new float[] { centre[0] - bounds.x, centre[1] - bounds.y });
params.distanceThreshold = distanceThreshold;
}
// This is not needed since the bounds are passed using the FitJob
//params.setOffset(new float[] { bounds.x, bounds.y });
int startT = trace.getHead().getFrame();
params.endT = trace.getTail().getFrame();
ParameterisedFitJob job = new ParameterisedFitJob(n, params, startT, data, bounds);
jobItems.add(new JobItem(job, trace, centre));
engine.run(job);
fitted++;
}
engine.end(false);
IJ.showStatus("");
IJ.showProgress(1);
// Check the success ...
FitStatus[] values = FitStatus.values();
int[] statusCount = new int[values.length + 1];
ArrayList<String> names = new ArrayList<String>(Arrays.asList(SettingsManager.getNames((Object[]) values)));
names.add(String.format("No maxima within %.2f of centroid", distanceThreshold));
int separated = 0;
int success = 0;
final int debugLimit = 3;
for (JobItem jobItem : jobItems) {
int id = jobItem.getId();
ParameterisedFitJob job = jobItem.job;
Trace trace = jobItem.trace;
int[] indices = job.getIndices();
FitResult fitResult = null;
int status;
if (indices.length < 1) {
status = values.length;
} else if (indices.length > 1) {
// Choose the first OK result. This is all that matters for the success reporting
for (int n = 0; n < indices.length; n++) {
if (job.getFitResult(n).getStatus() == FitStatus.OK) {
fitResult = job.getFitResult(n);
break;
}
}
// Otherwise use the closest failure.
if (fitResult == null) {
final float[] centre = traces[id].getCentroid();
double minD = Double.POSITIVE_INFINITY;
for (int n = 0; n < indices.length; n++) {
// Since the fit has failed we use the initial parameters
final double[] params = job.getFitResult(n).getInitialParameters();
final double dx = params[Gaussian2DFunction.X_POSITION] - centre[0];
final double dy = params[Gaussian2DFunction.Y_POSITION] - centre[1];
final double d = dx * dx + dy * dy;
if (minD > d) {
minD = d;
fitResult = job.getFitResult(n);
}
}
}
status = fitResult.getStatus().ordinal();
} else {
fitResult = job.getFitResult(0);
status = fitResult.getStatus().ordinal();
}
// All jobs have only one peak
statusCount[status]++;
// Debug why any fits failed
if (fitResult == null || fitResult.getStatus() != FitStatus.OK) {
refitResults.addAll(trace.getPoints());
separated += trace.size();
if (debugFailures) {
FitStatus s = (fitResult == null) ? FitStatus.UNKNOWN : fitResult.getStatus();
// Only display the first n per category to limit the number of images
double[] noise = new double[1];
if (statusCount[status] <= debugLimit) {
Rectangle bounds = new Rectangle();
buildCombinedImage(source, trace, fitWidth, bounds, noise, true);
float[] centre = trace.getCentroid();
Utils.display(String.format("Trace %d (n=%d) : x=%f,y=%f", id, trace.size(), centre[0], centre[1]), slices);
switch(s) {
case INSUFFICIENT_PRECISION:
float precision = (Float) fitResult.getStatusData();
IJ.log(String.format("Trace %d (n=%d) : %s = %f", id, trace.size(), names.get(status), precision));
break;
case INSUFFICIENT_SIGNAL:
if (noise[0] == 0)
noise[0] = getCombinedNoise(trace);
float snr = (Float) fitResult.getStatusData();
IJ.log(String.format("Trace %d (n=%d) : %s = %f (noise=%.2f)", id, trace.size(), names.get(status), snr, noise[0]));
break;
case COORDINATES_MOVED:
case OUTSIDE_FIT_REGION:
case WIDTH_DIVERGED:
float[] shift = (float[]) fitResult.getStatusData();
IJ.log(String.format("Trace %d (n=%d) : %s = %.3f,%.3f", id, trace.size(), names.get(status), shift[0], shift[1]));
break;
default:
IJ.log(String.format("Trace %d (n=%d) : %s", id, trace.size(), names.get(status)));
break;
}
}
}
} else {
success++;
if (debugFailures) {
// Only display the first n per category to limit the number of images
double[] noise = new double[1];
if (statusCount[status] <= debugLimit) {
Rectangle bounds = new Rectangle();
buildCombinedImage(source, trace, fitWidth, bounds, noise, true);
float[] centre = trace.getCentroid();
Utils.display(String.format("Trace %d (n=%d) : x=%f,y=%f", id, trace.size(), centre[0], centre[1]), slices);
}
}
}
}
IJ.log(String.format("Trace fitting : %d singles : %d / %d fitted : %d separated", singles, success, fitted, separated));
if (separated > 0) {
IJ.log("Reasons for fit failure :");
// Start at i=1 to skip FitStatus.OK
for (int i = 1; i < statusCount.length; i++) {
if (statusCount[i] != 0)
IJ.log(" " + names.get(i) + " = " + statusCount[i]);
}
}
refitResults.end();
MemoryPeakResults.addResults(refitResults);
source.close();
}
use of gdsc.smlm.fitting.FitResult in project GDSC-SMLM by aherbert.
the class GaussianFit method fitSingle.
/**
* Fits a 2D Gaussian to the given data. Fits all the specified peaks.
* <p>
* Data must be arranged in yx block order, i.e. height rows of width.
*
* @param data
* @param width
* @param height
* @param index
* Index of the data to fit
* @param estimatedHeight
* Estimated height for the peak (input from smoothed data)
* @return Array containing the fitted curve data: The first value is the Background. The remaining values are
* Amplitude, PosX, PosY, StdDevX, StdDevY for each fitted peak.
* <p>
* Null if no fit is possible.
*/
private double[] fitSingle(Gaussian2DFitter gf, float[] data, int width, int height, int index, double estimatedHeight) {
this.fitResult = gf.fit(Utils.toDouble(data), width, height, new int[] { index }, new double[] { estimatedHeight });
if (fitResult.getStatus() == FitStatus.OK) {
chiSquared = fitResult.getError();
double[] params = fitResult.getParameters();
convertParameters(params);
// Check the fit is within the data
if (params[Gaussian2DFunction.X_POSITION] < 0 || params[Gaussian2DFunction.X_POSITION] > width || params[Gaussian2DFunction.Y_POSITION] < 0 || params[Gaussian2DFunction.Y_POSITION] > height) {
fitResult = new FitResult(FitStatus.OUTSIDE_FIT_REGION, fitResult.getDegreesOfFreedom(), fitResult.getError(), fitResult.getInitialParameters(), fitResult.getParameters(), fitResult.getParameterStdDev(), fitResult.getNumberOfPeaks(), fitResult.getNumberOfFittedParameters(), fitResult.getStatusData(), fitResult.getIterations(), fitResult.getEvaluations());
return null;
}
return params;
}
return null;
}
use of gdsc.smlm.fitting.FitResult in project GDSC-SMLM by aherbert.
the class FitWorker method add.
/*
* (non-Javadoc)
*
* @see gdsc.smlm.results.filter.MultiPathFilter.SelectedResultStore#add(gdsc.smlm.results.filter.MultiPathFilter.
* SelectedResult)
*/
public void add(SelectedResult selectedResult) {
// TODO - Print the current state of the dynamicMultiPathFitResult to file.
// This will allow debugging what is different between the benchmark fit and the PeakFit.
// Output:
// slice
// candidate Id
// Initial and final params for each fit result.
// Details of the selected result.
// Then try to figure out why the benchmark fit deviates from PeakFit.
// Add to the slice results.
final PreprocessedPeakResult[] results = selectedResult.results;
if (results == null)
return;
final int currrentSize = sliceResults.size();
final int candidateId = dynamicMultiPathFitResult.candidateId;
final FitResult fitResult = (FitResult) selectedResult.fitResult.data;
// The background for each result was the local background. We want the fitted global background
final float background = (float) fitResult.getParameters()[0];
final double[] dev = fitResult.getParameterStdDev();
if (queueSize != 0)
throw new RuntimeException("There are results queued already!");
for (int i = 0; i < results.length; i++) {
if (results[i].isExistingResult())
continue;
if (results[i].isNewResult()) {
final double[] p = results[i].toGaussian2DParameters();
// Store slice results relative to the data frame (not the global bounds)
// Convert back so that 0,0 is the top left of the data bounds
p[Gaussian2DFunction.X_POSITION] -= cc.dataBounds.x;
p[Gaussian2DFunction.Y_POSITION] -= cc.dataBounds.y;
final float[] params = new float[7];
params[Gaussian2DFunction.BACKGROUND] = background;
for (int j = 1; j < 7; j++) params[j] = (float) p[j];
final float[] paramsDev;
if (dev == null) {
paramsDev = null;
} else {
paramsDev = new float[7];
paramsDev[Gaussian2DFunction.BACKGROUND] = (float) dev[Gaussian2DFunction.BACKGROUND];
final int offset = results[i].getId() * 6;
for (int j = 1; j < 7; j++) paramsDev[j] = (float) dev[offset + j];
}
addSingleResult(results[i].getCandidateId(), params, paramsDev, fitResult.getError(), results[i].getNoise());
if (logger != null) {
// Show the shift, signal and width spread
PreprocessedPeakResult peak = results[i];
logger.info("Fit OK %d (%.1f,%.1f) [%d]: Shift = %.3f,%.3f : SNR = %.2f : Width = %.2f,%.2f", peak.getCandidateId(), peak.getX(), peak.getY(), peak.getId(), Math.sqrt(peak.getXRelativeShift2()), Math.sqrt(peak.getYRelativeShift2()), peak.getSNR(), peak.getXSDFactor(), peak.getYSDFactor());
}
} else {
// This is a candidate that passed validation. Store the estimate as passing the primary filter.
// We now do this is the pass() method.
//storeEstimate(results[i].getCandidateId(), results[i], FILTER_RANK_PRIMARY);
}
}
job.setFitResult(candidateId, fitResult);
// Reporting
if (this.counter != null) {
FitType fitType = dynamicMultiPathFitResult.fitType;
if (selectedResult.fitResult.getStatus() == 0) {
fitType.setOK(true);
if (dynamicMultiPathFitResult.getSuperMultiFitResult() == selectedResult.fitResult)
fitType.setMultiOK(true);
else if (dynamicMultiPathFitResult.getSuperMultiDoubletFitResult() == selectedResult.fitResult)
fitType.setMultiDoubletOK(true);
else if (dynamicMultiPathFitResult.getSuperDoubletFitResult() == selectedResult.fitResult)
fitType.setDoubletOK(true);
}
add(fitType);
}
if (logger != null) {
switch(fitResult.getStatus()) {
case OK:
// We log good results in the loop above.
break;
case BAD_PARAMETERS:
case FAILED_TO_ESTIMATE_WIDTH:
logger.info("Bad parameters: %s", Arrays.toString(fitResult.getInitialParameters()));
break;
default:
logger.info(fitResult.getStatus().toString());
break;
}
}
// Debugging
if (logger2 != null) {
double[] peakParams = fitResult.getParameters();
if (peakParams != null) {
// Parameters are the raw values from fitting the region. Convert for logging.
peakParams = Arrays.copyOf(peakParams, peakParams.length);
int npeaks = peakParams.length / 6;
for (int i = 0; i < npeaks; i++) {
peakParams[i * 6 + Gaussian2DFunction.X_POSITION] += cc.fromFitRegionToGlobalX();
peakParams[i * 6 + Gaussian2DFunction.Y_POSITION] += cc.fromFitRegionToGlobalY();
peakParams[i * 6 + Gaussian2DFunction.SHAPE] *= 180.0 / Math.PI;
}
}
final int x = candidates.get(candidateId).x;
final int y = candidates.get(candidateId).y;
logger2.debug("%d:%d [%d,%d] %s (%s) = %s\n", slice, candidateId, cc.fromDataToGlobalX(x), cc.fromDataToGlobalY(y), fitResult.getStatus(), fitResult.getStatusData(), Arrays.toString(peakParams));
}
// Check if there were any new results
int npeaks = sliceResults.size() - currrentSize;
if (npeaks != 0) {
success++;
// Support for post-processing filter
if (resultFilter != null) {
// Check all result peaks for the distance to the filter positions
PeakResult[] peakResults = new PeakResult[npeaks];
for (int i = sliceResults.size(); npeaks-- > 0; ) {
peakResults[npeaks] = sliceResults.get(--i);
}
resultFilter.filter(fitResult, candidateId, peakResults);
}
}
}
Aggregations