use of gdsc.smlm.fitting.FitStatus in project GDSC-SMLM by aherbert.
the class DoubletAnalysis method runAnalysis.
/**
* Run analysis.
*/
private void runAnalysis() {
if (doubletResults == null) {
IJ.error(TITLE, "No doublet results in memory");
return;
}
// Ask the user to set filters
if (!showAnalysisDialog())
return;
showResults(doubletResults, analysisShowResults);
// Store the effect of fitting as a doublet
ArrayList<DoubletBonus> data = new ArrayList<DoubletBonus>(doubletResults.size());
// True positive and False positives at residuals = 0
double tp = 0;
double fp = 0;
Logger logger = (analysisLogging) ? new IJLogger() : null;
// Get filters for the single and double fits
// No coordinate shift for the doublet. We have already done simple checking of the
// coordinates to get the good=2 flag
FitConfiguration filterFitConfig2 = filterFitConfig.clone();
filterFitConfig2.setCoordinateShift(Integer.MAX_VALUE);
final int size = 2 * config.getRelativeFitting() + 1;
Rectangle regionBounds = new Rectangle(0, 0, size, size);
final double otherDriftAngle = 180 - analysisDriftAngle;
// Process all the results
for (DoubletResult result : doubletResults) {
// Filter the singles that would be accepted
if (result.good1) {
filterFitConfig.setNoise(result.noise);
FitStatus fitStatus0 = filterFitConfig.validatePeak(0, result.fitResult1.getInitialParameters(), result.fitResult1.getParameters());
double tp1 = 0, fp1 = 0;
if (fitStatus0 == FitStatus.OK) {
tp1 = result.tp1;
fp1 = result.fp1;
} else if (analysisLogging)
logFailure(logger, 0, result, fitStatus0);
// width diverged spots as OK for a doublet fit
if ((fitStatus0 == FitStatus.OK || fitStatus0 == FitStatus.WIDTH_DIVERGED) && selectFit(result) && result.good2) {
double tp2 = 0, fp2 = 0;
// Basic spot criteria (SNR, Photons, width)
filterFitConfig2.setNoise(result.noise);
FitStatus fitStatus1 = filterFitConfig2.validatePeak(0, result.fitResult2.getInitialParameters(), result.fitResult2.getParameters());
FitStatus fitStatus2 = filterFitConfig2.validatePeak(1, result.fitResult2.getInitialParameters(), result.fitResult2.getParameters());
// Log basic failures
boolean[] accept = new boolean[2];
if (fitStatus1 == FitStatus.OK) {
accept[0] = true;
} else if (analysisLogging)
logFailure(logger, 1, result, fitStatus1);
if (fitStatus2 == FitStatus.OK) {
accept[1] = true;
} else if (analysisLogging)
logFailure(logger, 2, result, fitStatus2);
// We can filter each spot with criteria such as shift and the angle to the quadrant.
if (accept[0] || accept[1]) {
if (result.gap < minGap) {
accept[0] = accept[1] = false;
if (analysisLogging)
logger.info("Reject Doublet (%.2f): Fitted coordinates below min gap (%g<%g)\n", result.getMaxScore(), result.gap, minGap);
}
}
if (accept[0] || accept[1]) {
// The logic in here will be copied to the FitWorker.quadrantAnalysis routine.
double[] params = result.fitResult1.getParameters();
double[] newParams = result.fitResult2.getParameters();
// Set up for shift filtering
double shift = filterFitConfig.getCoordinateShift();
if (shift == 0 || shift == Double.POSITIVE_INFINITY) {
// Allow the shift to span half of the fitted window.
shift = 0.5 * FastMath.min(regionBounds.width, regionBounds.height);
}
// Set an upper limit on the shift that is not too far outside the fit window
final double maxShiftX, maxShiftY;
final double factor = Gaussian2DFunction.SD_TO_HWHM_FACTOR;
if (fitConfig.isWidth0Fitting()) {
// Add the fitted standard deviation to the allowed shift
maxShiftX = regionBounds.width * 0.5 + factor * params[Gaussian2DFunction.X_SD];
maxShiftY = regionBounds.height * 0.5 + factor * params[Gaussian2DFunction.Y_SD];
} else {
// Add the configured standard deviation to the allowed shift
maxShiftX = regionBounds.width * 0.5 + factor * fitConfig.getInitialPeakStdDev0();
maxShiftY = regionBounds.height * 0.5 + factor * fitConfig.getInitialPeakStdDev1();
}
for (int n = 0; n < 2; n++) {
if (!accept[n])
continue;
// Reset
accept[n] = false;
final double xShift = newParams[Gaussian2DFunction.X_POSITION + n * 6] - params[Gaussian2DFunction.X_POSITION];
final double yShift = newParams[Gaussian2DFunction.Y_POSITION + n * 6] - params[Gaussian2DFunction.Y_POSITION];
if (Math.abs(xShift) > maxShiftX || Math.abs(yShift) > maxShiftY) {
if (analysisLogging)
logger.info("Reject P%d (%.2f): Fitted coordinates moved outside fit region (x=%g,y=%g)\n", n + 1, result.getMaxScore(), xShift, yShift);
continue;
}
if (Math.abs(xShift) > shift || Math.abs(yShift) > shift) {
// Allow up to a 45 degree difference to show the shift is along the vector
if (result.a[n] > analysisDriftAngle && result.a[n] < otherDriftAngle) {
if (analysisLogging)
logger.info("Reject P%d (%.2f): Fitted coordinates moved into wrong quadrant (x=%g,y=%g,a=%f)", n + 1, result.getMaxScore(), xShift, yShift, result.a[n]);
continue;
}
// Note: The FitWorker also checks for drift to another candidate.
}
// This is OK
accept[n] = true;
}
}
if (accept[0]) {
tp2 += result.tp2a;
fp2 += result.fp2a;
}
if (accept[1]) {
tp2 += result.tp2b;
fp2 += result.fp2b;
}
if (accept[0] || accept[1]) {
tp += tp2;
fp += fp2;
// Store this as a doublet bonus
data.add(new DoubletBonus(result.getMaxScore(), result.getAvScore(), tp2 - tp1, fp2 - fp1));
} else {
// No doublet fit so this will always be the single fit result
tp += tp1;
fp += fp1;
}
} else {
// No doublet fit so this will always be the single fit result
tp += tp1;
fp += fp1;
}
}
}
// Compute the max Jaccard
computeScores(data, tp, fp, numberOfMolecules, useMaxResiduals);
if (showJaccardPlot)
plotJaccard(residualsScore, (useMaxResiduals) ? _residualsScoreMax : _residualsScoreAv);
createAnalysisTable();
StringBuilder sb = new StringBuilder(analysisPrefix);
sb.append(analysisTitle).append('\t');
sb.append((useMaxResiduals) ? "Max" : "Average").append('\t');
sb.append(SELECTION_CRITERIA[selectionCriteria]).append('\t');
if (filterFitConfig.isSmartFilter()) {
sb.append(filterFitConfig.getSmartFilterName()).append("\t\t\t\t\t\t\t\t");
} else {
sb.append('\t');
sb.append(filterFitConfig.getCoordinateShiftFactor()).append('\t');
sb.append(filterFitConfig.getSignalStrength()).append('\t');
sb.append(filterFitConfig.getMinPhotons()).append('\t');
sb.append(filterFitConfig.getMinWidthFactor()).append('\t');
sb.append(filterFitConfig.getWidthFactor()).append('\t');
sb.append(filterFitConfig.getPrecisionThreshold()).append('\t');
sb.append(filterFitConfig.isPrecisionUsingBackground()).append('\t');
}
sb.append(analysisDriftAngle).append('\t');
sb.append(minGap).append('\t');
addJaccardScores(sb);
analysisTable.append(sb.toString());
saveTemplate(sb.toString());
}
use of gdsc.smlm.fitting.FitStatus in project GDSC-SMLM by aherbert.
the class BaseFunctionSolver method fit.
/*
* (non-Javadoc)
*
* @see gdsc.smlm.fitting.FunctionSolver#fit(double[], double[], double[], double[])
*/
public FitStatus fit(double[] y, double[] y_fit, double[] a, double[] a_dev) {
// Reset the results
numberOfFittedPoints = y.length;
iterations = 0;
evaluations = 0;
value = 0;
lastY = null;
lastA = null;
preProcess();
FitStatus status = computeFit(y, y_fit, a, a_dev);
if (status == FitStatus.OK) {
if (lastY == null)
lastY = y;
if (lastA == null)
lastA = a;
postProcess();
}
return status;
}
use of gdsc.smlm.fitting.FitStatus in project GDSC-SMLM by aherbert.
the class NonLinearFit method computeFit.
/**
* Uses Levenberg-Marquardt method to fit a nonlinear model with coefficients (a) for a
* set of data points (x, y).
* <p>
* It is assumed that the data points x[i] corresponding to y[i] are consecutive integers from zero.
*
* @param y
* Set of n data points to fit (input)
* @param y_fit
* Fitted data points (output)
* @param a
* Set of m coefficients (input/output)
* @param a_dev
* Standard deviation of the set of m coefficients (output)
* @return The fit status
*/
public FitStatus computeFit(double[] y, double[] y_fit, final double[] a, final double[] a_dev) {
int n = y.length;
final int nparams = f.gradientIndices().length;
// Create dynamically for the parameter sizes
calculator = GradientCalculatorFactory.newCalculator(nparams, isMLE());
// Initialise storage.
// Note that covar and da are passed to EJMLLinerSolver and so must be the correct size.
beta = new double[nparams];
da = new double[nparams];
covar = new double[nparams][nparams];
alpha = new double[nparams][nparams];
ap = new double[a.length];
// Store the { best, previous, new } sum-of-squares values
sumOfSquaresWorking = new double[3];
boolean copyYfit = false;
if (isMLE()) {
// We must have positive data
y = ensurePositive(n, y);
// Store the function values for use in computing the log likelihood
lastY = y;
if (y_fit == null) {
// Re-use space
if (lastY_fit == null || lastY_fit.length < y.length)
lastY_fit = new double[y.length];
y_fit = lastY_fit;
// We will not need to copy y_fit later since lastY_fit is used direct
copyYfit = false;
}
}
final FitStatus result = doFit(n, y, y_fit, a, a_dev, sc);
this.evaluations = this.iterations = sc.getIteration();
if (isMLE()) {
// code may modify it
if (copyYfit) {
if (lastY_fit == null || lastY_fit.length < y.length)
lastY_fit = new double[y.length];
System.arraycopy(y_fit, 0, lastY_fit, 0, y.length);
}
}
return result;
}
use of gdsc.smlm.fitting.FitStatus in project GDSC-SMLM by aherbert.
the class TraceMolecules method fitTraces.
private void fitTraces(MemoryPeakResults results, Trace[] traces) {
// Check if the original image is open and the fit configuration can be extracted
ImageSource source = results.getSource();
if (source == null)
return;
if (!source.open())
return;
FitEngineConfiguration config = (FitEngineConfiguration) XmlUtils.fromXML(results.getConfiguration());
if (config == null)
return;
// Show a dialog asking if the traces should be refit
ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
gd.addMessage("Do you want to fit the traces as a single peak using a combined image?");
gd.addCheckbox("Fit_closest_to_centroid", !fitOnlyCentroid);
gd.addSlider("Distance_threshold", 0.01, 3, distanceThreshold);
gd.addSlider("Expansion_factor", 1, 4.5, expansionFactor);
// Allow fitting settings to be adjusted
FitConfiguration fitConfig = config.getFitConfiguration();
gd.addMessage("--- Gaussian fitting ---");
String[] filterTypes = SettingsManager.getNames((Object[]) DataFilterType.values());
gd.addChoice("Spot_filter_type", filterTypes, filterTypes[config.getDataFilterType().ordinal()]);
String[] filterNames = SettingsManager.getNames((Object[]) DataFilter.values());
gd.addChoice("Spot_filter", filterNames, filterNames[config.getDataFilter(0).ordinal()]);
gd.addSlider("Smoothing", 0, 2.5, config.getSmooth(0));
gd.addSlider("Search_width", 0.5, 2.5, config.getSearch());
gd.addSlider("Border", 0.5, 2.5, config.getBorder());
gd.addSlider("Fitting_width", 2, 4.5, config.getFitting());
String[] solverNames = SettingsManager.getNames((Object[]) FitSolver.values());
gd.addChoice("Fit_solver", solverNames, solverNames[fitConfig.getFitSolver().ordinal()]);
String[] functionNames = SettingsManager.getNames((Object[]) FitFunction.values());
gd.addChoice("Fit_function", functionNames, functionNames[fitConfig.getFitFunction().ordinal()]);
String[] criteriaNames = SettingsManager.getNames((Object[]) FitCriteria.values());
gd.addChoice("Fit_criteria", criteriaNames, criteriaNames[fitConfig.getFitCriteria().ordinal()]);
gd.addNumericField("Significant_digits", fitConfig.getSignificantDigits(), 0);
gd.addNumericField("Coord_delta", fitConfig.getDelta(), 4);
gd.addNumericField("Lambda", fitConfig.getLambda(), 4);
gd.addNumericField("Max_iterations", fitConfig.getMaxIterations(), 0);
gd.addNumericField("Fail_limit", config.getFailuresLimit(), 0);
gd.addCheckbox("Include_neighbours", config.isIncludeNeighbours());
gd.addSlider("Neighbour_height", 0.01, 1, config.getNeighbourHeightThreshold());
gd.addSlider("Residuals_threshold", 0.01, 1, config.getResidualsThreshold());
//gd.addSlider("Duplicate_distance", 0, 1.5, fitConfig.getDuplicateDistance());
gd.addMessage("--- Peak filtering ---\nDiscard fits that shift; are too low; or expand/contract");
gd.addCheckbox("Smart_filter", fitConfig.isSmartFilter());
gd.addCheckbox("Disable_simple_filter", fitConfig.isDisableSimpleFilter());
gd.addSlider("Shift_factor", 0.01, 2, fitConfig.getCoordinateShiftFactor());
gd.addNumericField("Signal_strength", fitConfig.getSignalStrength(), 2);
gd.addNumericField("Min_photons", fitConfig.getMinPhotons(), 0);
gd.addSlider("Min_width_factor", 0, 0.99, fitConfig.getMinWidthFactor());
gd.addSlider("Width_factor", 1.01, 5, fitConfig.getWidthFactor());
gd.addNumericField("Precision", fitConfig.getPrecisionThreshold(), 2);
gd.addCheckbox("Debug_failures", debugFailures);
gd.showDialog();
if (!gd.wasOKed()) {
source.close();
return;
}
// Get parameters for the fit
fitOnlyCentroid = !gd.getNextBoolean();
distanceThreshold = (float) gd.getNextNumber();
expansionFactor = (float) gd.getNextNumber();
config.setDataFilterType(gd.getNextChoiceIndex());
config.setDataFilter(gd.getNextChoiceIndex(), Math.abs(gd.getNextNumber()), 0);
config.setSearch(gd.getNextNumber());
config.setBorder(gd.getNextNumber());
config.setFitting(gd.getNextNumber());
fitConfig.setFitSolver(gd.getNextChoiceIndex());
fitConfig.setFitFunction(gd.getNextChoiceIndex());
fitConfig.setFitCriteria(gd.getNextChoiceIndex());
fitConfig.setSignificantDigits((int) gd.getNextNumber());
fitConfig.setDelta(gd.getNextNumber());
fitConfig.setLambda(gd.getNextNumber());
fitConfig.setMaxIterations((int) gd.getNextNumber());
config.setFailuresLimit((int) gd.getNextNumber());
config.setIncludeNeighbours(gd.getNextBoolean());
config.setNeighbourHeightThreshold(gd.getNextNumber());
config.setResidualsThreshold(gd.getNextNumber());
fitConfig.setSmartFilter(gd.getNextBoolean());
fitConfig.setDisableSimpleFilter(gd.getNextBoolean());
fitConfig.setCoordinateShiftFactor(gd.getNextNumber());
fitConfig.setSignalStrength(gd.getNextNumber());
fitConfig.setMinPhotons(gd.getNextNumber());
fitConfig.setMinWidthFactor(gd.getNextNumber());
fitConfig.setWidthFactor(gd.getNextNumber());
fitConfig.setPrecisionThreshold(gd.getNextNumber());
// Check arguments
try {
Parameters.isAboveZero("Distance threshold", distanceThreshold);
Parameters.isAbove("Expansion factor", expansionFactor, 1);
Parameters.isAboveZero("Search_width", config.getSearch());
Parameters.isAboveZero("Fitting_width", config.getFitting());
Parameters.isAboveZero("Significant digits", fitConfig.getSignificantDigits());
Parameters.isAboveZero("Delta", fitConfig.getDelta());
Parameters.isAboveZero("Lambda", fitConfig.getLambda());
Parameters.isAboveZero("Max iterations", fitConfig.getMaxIterations());
Parameters.isPositive("Failures limit", config.getFailuresLimit());
Parameters.isPositive("Neighbour height threshold", config.getNeighbourHeightThreshold());
Parameters.isPositive("Residuals threshold", config.getResidualsThreshold());
Parameters.isPositive("Coordinate Shift factor", fitConfig.getCoordinateShiftFactor());
Parameters.isPositive("Signal strength", fitConfig.getSignalStrength());
Parameters.isPositive("Min photons", fitConfig.getMinPhotons());
Parameters.isPositive("Min width factor", fitConfig.getMinWidthFactor());
Parameters.isPositive("Width factor", fitConfig.getWidthFactor());
Parameters.isPositive("Precision threshold", fitConfig.getPrecisionThreshold());
} catch (IllegalArgumentException e) {
IJ.error(TITLE, e.getMessage());
source.close();
return;
}
debugFailures = gd.getNextBoolean();
if (!PeakFit.configureSmartFilter(globalSettings, filename))
return;
if (!PeakFit.configureDataFilter(globalSettings, filename, false))
return;
if (!PeakFit.configureFitSolver(globalSettings, filename, false))
return;
// Adjust settings for a single maxima
config.setIncludeNeighbours(false);
fitConfig.setDuplicateDistance(0);
// Create a fit engine
MemoryPeakResults refitResults = new MemoryPeakResults();
refitResults.copySettings(results);
refitResults.setName(results.getName() + " Trace Fit");
refitResults.setSortAfterEnd(true);
refitResults.begin();
// No border since we know where the peaks are and we must not miss them due to truncated searching
FitEngine engine = new FitEngine(config, refitResults, Prefs.getThreads(), FitQueue.BLOCKING);
// Either : Only fit the centroid
// or : Extract a bigger region, allowing all fits to run as normal and then
// find the correct spot using Euclidian distance.
// Set up the limits
final double stdDev = FastMath.max(fitConfig.getInitialPeakStdDev0(), fitConfig.getInitialPeakStdDev1());
float fitWidth = (float) (stdDev * config.getFitting() * ((fitOnlyCentroid) ? 1 : expansionFactor));
IJ.showStatus("Refitting traces ...");
List<JobItem> jobItems = new ArrayList<JobItem>(traces.length);
int singles = 0;
int fitted = 0;
for (int n = 0; n < traces.length; n++) {
Trace trace = traces[n];
if (n % 32 == 0)
IJ.showProgress(n, traces.length);
// Skip traces with one peak
if (trace.size() == 1) {
singles++;
// Use the synchronized method to avoid thread clashes with the FitEngine
refitResults.addSync(trace.getHead());
continue;
}
Rectangle bounds = new Rectangle();
double[] combinedNoise = new double[1];
float[] data = buildCombinedImage(source, trace, fitWidth, bounds, combinedNoise, false);
if (data == null)
continue;
// Fit the combined image
FitParameters params = new FitParameters();
params.noise = (float) combinedNoise[0];
float[] centre = trace.getCentroid();
if (fitOnlyCentroid) {
int newX = (int) Math.round(centre[0]) - bounds.x;
int newY = (int) Math.round(centre[1]) - bounds.y;
params.maxIndices = new int[] { newY * bounds.width + newX };
} else {
params.filter = new ArrayList<float[]>();
params.filter.add(new float[] { centre[0] - bounds.x, centre[1] - bounds.y });
params.distanceThreshold = distanceThreshold;
}
// This is not needed since the bounds are passed using the FitJob
//params.setOffset(new float[] { bounds.x, bounds.y });
int startT = trace.getHead().getFrame();
params.endT = trace.getTail().getFrame();
ParameterisedFitJob job = new ParameterisedFitJob(n, params, startT, data, bounds);
jobItems.add(new JobItem(job, trace, centre));
engine.run(job);
fitted++;
}
engine.end(false);
IJ.showStatus("");
IJ.showProgress(1);
// Check the success ...
FitStatus[] values = FitStatus.values();
int[] statusCount = new int[values.length + 1];
ArrayList<String> names = new ArrayList<String>(Arrays.asList(SettingsManager.getNames((Object[]) values)));
names.add(String.format("No maxima within %.2f of centroid", distanceThreshold));
int separated = 0;
int success = 0;
final int debugLimit = 3;
for (JobItem jobItem : jobItems) {
int id = jobItem.getId();
ParameterisedFitJob job = jobItem.job;
Trace trace = jobItem.trace;
int[] indices = job.getIndices();
FitResult fitResult = null;
int status;
if (indices.length < 1) {
status = values.length;
} else if (indices.length > 1) {
// Choose the first OK result. This is all that matters for the success reporting
for (int n = 0; n < indices.length; n++) {
if (job.getFitResult(n).getStatus() == FitStatus.OK) {
fitResult = job.getFitResult(n);
break;
}
}
// Otherwise use the closest failure.
if (fitResult == null) {
final float[] centre = traces[id].getCentroid();
double minD = Double.POSITIVE_INFINITY;
for (int n = 0; n < indices.length; n++) {
// Since the fit has failed we use the initial parameters
final double[] params = job.getFitResult(n).getInitialParameters();
final double dx = params[Gaussian2DFunction.X_POSITION] - centre[0];
final double dy = params[Gaussian2DFunction.Y_POSITION] - centre[1];
final double d = dx * dx + dy * dy;
if (minD > d) {
minD = d;
fitResult = job.getFitResult(n);
}
}
}
status = fitResult.getStatus().ordinal();
} else {
fitResult = job.getFitResult(0);
status = fitResult.getStatus().ordinal();
}
// All jobs have only one peak
statusCount[status]++;
// Debug why any fits failed
if (fitResult == null || fitResult.getStatus() != FitStatus.OK) {
refitResults.addAll(trace.getPoints());
separated += trace.size();
if (debugFailures) {
FitStatus s = (fitResult == null) ? FitStatus.UNKNOWN : fitResult.getStatus();
// Only display the first n per category to limit the number of images
double[] noise = new double[1];
if (statusCount[status] <= debugLimit) {
Rectangle bounds = new Rectangle();
buildCombinedImage(source, trace, fitWidth, bounds, noise, true);
float[] centre = trace.getCentroid();
Utils.display(String.format("Trace %d (n=%d) : x=%f,y=%f", id, trace.size(), centre[0], centre[1]), slices);
switch(s) {
case INSUFFICIENT_PRECISION:
float precision = (Float) fitResult.getStatusData();
IJ.log(String.format("Trace %d (n=%d) : %s = %f", id, trace.size(), names.get(status), precision));
break;
case INSUFFICIENT_SIGNAL:
if (noise[0] == 0)
noise[0] = getCombinedNoise(trace);
float snr = (Float) fitResult.getStatusData();
IJ.log(String.format("Trace %d (n=%d) : %s = %f (noise=%.2f)", id, trace.size(), names.get(status), snr, noise[0]));
break;
case COORDINATES_MOVED:
case OUTSIDE_FIT_REGION:
case WIDTH_DIVERGED:
float[] shift = (float[]) fitResult.getStatusData();
IJ.log(String.format("Trace %d (n=%d) : %s = %.3f,%.3f", id, trace.size(), names.get(status), shift[0], shift[1]));
break;
default:
IJ.log(String.format("Trace %d (n=%d) : %s", id, trace.size(), names.get(status)));
break;
}
}
}
} else {
success++;
if (debugFailures) {
// Only display the first n per category to limit the number of images
double[] noise = new double[1];
if (statusCount[status] <= debugLimit) {
Rectangle bounds = new Rectangle();
buildCombinedImage(source, trace, fitWidth, bounds, noise, true);
float[] centre = trace.getCentroid();
Utils.display(String.format("Trace %d (n=%d) : x=%f,y=%f", id, trace.size(), centre[0], centre[1]), slices);
}
}
}
}
IJ.log(String.format("Trace fitting : %d singles : %d / %d fitted : %d separated", singles, success, fitted, separated));
if (separated > 0) {
IJ.log("Reasons for fit failure :");
// Start at i=1 to skip FitStatus.OK
for (int i = 1; i < statusCount.length; i++) {
if (statusCount[i] != 0)
IJ.log(" " + names.get(i) + " = " + statusCount[i]);
}
}
refitResults.end();
MemoryPeakResults.addResults(refitResults);
source.close();
}
use of gdsc.smlm.fitting.FitStatus in project GDSC-SMLM by aherbert.
the class BaseFunctionSolverTest method fitGaussian.
double[] fitGaussian(FunctionSolver solver, double[] data, double[] params, double[] expected) {
//System.out.printf("%s : Expected %s\n", solver.getClass().getSimpleName(), Arrays.toString(expected));
params = params.clone();
FitStatus status = solver.fit(data, null, params, null);
if (status != FitStatus.OK)
Assert.assertTrue(String.format("Fit Failed: %s i=%d: %s != %s", status.toString(), solver.getIterations(), Arrays.toString(params), Arrays.toString(expected)), false);
return params;
}
Aggregations