use of org.apache.commons.rng.sampling.distribution.PoissonSampler in project GDSC-SMLM by aherbert.
the class CreateData method run.
@Override
public void run(String arg) {
SmlmUsageTracker.recordPlugin(this.getClass(), arg);
extraOptions = ImageJUtils.isExtraOptions();
simpleMode = (arg != null && arg.contains("simple"));
benchmarkMode = (arg != null && arg.contains("benchmark"));
spotMode = (arg != null && arg.contains("spot"));
trackMode = (arg != null && arg.contains("track"));
if ("load".equals(arg)) {
loadBenchmarkData();
return;
}
// Each localisation set is a collection of localisations that represent all localisations
// with the same ID that are on in the same image time frame (Note: the simulation
// can create many localisations per fluorophore per time frame which is useful when
// modelling moving particles)
List<LocalisationModelSet> localisationSets = null;
// Each fluorophore contains the on and off times when light was emitted
List<? extends FluorophoreSequenceModel> fluorophores = null;
if (simpleMode || benchmarkMode || spotMode) {
if (!showSimpleDialog()) {
return;
}
resetMemory();
// 1 second frames
settings.setExposureTime(1000);
areaInUm = settings.getSize() * settings.getPixelPitch() * settings.getSize() * settings.getPixelPitch() / 1e6;
// Number of spots per frame
int count = 0;
int[] nextN = null;
SpatialDistribution dist;
if (benchmarkMode) {
// --------------------
// BENCHMARK SIMULATION
// --------------------
// Draw the same point on the image repeatedly
count = 1;
dist = createFixedDistribution();
try {
reportAndSaveFittingLimits(dist);
} catch (final Exception ex) {
// This will be from the computation of the CRLB
IJ.error(TITLE, ex.getMessage());
return;
}
} else if (spotMode) {
// ---------------
// SPOT SIMULATION
// ---------------
// The spot simulation draws 0 or 1 random point per frame.
// Ensure we have 50% of the frames with a spot.
nextN = new int[settings.getParticles() * 2];
Arrays.fill(nextN, 0, settings.getParticles(), 1);
RandomUtils.shuffle(nextN, UniformRandomProviders.create());
// Only put spots in the central part of the image
final double border = settings.getSize() / 4.0;
dist = createUniformDistribution(border);
} else {
// -----------------
// SIMPLE SIMULATION
// -----------------
// The simple simulation draws n random points per frame to achieve a specified density.
// No points will appear in multiple frames.
// Each point has a random number of photons sampled from a range.
// We can optionally use a mask. Create his first as it updates the areaInUm
dist = createDistribution();
// Randomly sample (i.e. not uniform density in all frames)
if (settings.getSamplePerFrame()) {
final double mean = areaInUm * settings.getDensity();
ImageJUtils.log("Mean samples = %f", mean);
if (mean < 0.5) {
final GenericDialog gd = new GenericDialog(TITLE);
gd.addMessage("The mean samples per frame is low: " + MathUtils.rounded(mean) + "\n \nContinue?");
gd.enableYesNoCancel();
gd.hideCancelButton();
gd.showDialog();
if (!gd.wasOKed()) {
return;
}
}
final PoissonSampler poisson = new PoissonSampler(createRandomGenerator(), mean);
final StoredDataStatistics samples = new StoredDataStatistics(settings.getParticles());
while (samples.getSum() < settings.getParticles()) {
samples.add(poisson.sample());
}
nextN = new int[samples.getN()];
for (int i = 0; i < nextN.length; i++) {
nextN[i] = (int) samples.getValue(i);
}
} else {
// Use the density to get the number per frame
count = (int) Math.max(1, Math.round(areaInUm * settings.getDensity()));
}
}
UniformRandomProvider rng = null;
localisationSets = new ArrayList<>(settings.getParticles());
final int minPhotons = (int) settings.getPhotonsPerSecond();
final int range = (int) settings.getPhotonsPerSecondMaximum() - minPhotons + 1;
if (range > 1) {
rng = createRandomGenerator();
}
// Add frames at the specified density until the number of particles has been reached
int id = 0;
int time = 0;
while (id < settings.getParticles()) {
// Allow the number per frame to be specified
if (nextN != null) {
if (time >= nextN.length) {
break;
}
count = nextN[time];
}
// Simulate random positions in the frame for the specified density
time++;
for (int j = 0; j < count; j++) {
final double[] xyz = dist.next();
// Ignore within border. We do not want to draw things we cannot fit.
// if (!distBorder.isWithinXy(xyz))
// continue;
// Simulate random photons
final int intensity = minPhotons + ((rng != null) ? rng.nextInt(range) : 0);
final LocalisationModel m = new LocalisationModel(id, time, xyz, intensity, LocalisationModel.CONTINUOUS);
// Each localisation can be a separate localisation set
final LocalisationModelSet set = new LocalisationModelSet(id, time);
set.add(m);
localisationSets.add(set);
id++;
}
}
} else {
if (!showDialog()) {
return;
}
resetMemory();
areaInUm = settings.getSize() * settings.getPixelPitch() * settings.getSize() * settings.getPixelPitch() / 1e6;
int totalSteps;
double correlation = 0;
ImageModel imageModel;
if (trackMode) {
// ----------------
// TRACK SIMULATION
// ----------------
// In track mode we create fixed lifetime fluorophores that do not overlap in time.
// This is the simplest simulation to test moving molecules.
settings.setSeconds((int) Math.ceil(settings.getParticles() * (settings.getExposureTime() + settings.getTOn()) / 1000));
totalSteps = 0;
final double simulationStepsPerFrame = (settings.getStepsPerSecond() * settings.getExposureTime()) / 1000.0;
imageModel = new FixedLifetimeImageModel(settings.getStepsPerSecond() * settings.getTOn() / 1000.0, simulationStepsPerFrame, createRandomGenerator());
} else {
// ---------------
// FULL SIMULATION
// ---------------
// The full simulation draws n random points in space.
// The same molecule may appear in multiple frames, move and blink.
//
// Points are modelled as fluorophores that must be activated and then will
// blink and photo-bleach. The molecules may diffuse and this can be simulated
// with many steps per image frame. All steps from a frame are collected
// into a localisation set which can be drawn on the output image.
final SpatialIllumination activationIllumination = createIllumination(settings.getPulseRatio(), settings.getPulseInterval());
// Generate additional frames so that each frame has the set number of simulation steps
totalSteps = (int) Math.ceil(settings.getSeconds() * settings.getStepsPerSecond());
// Since we have an exponential decay of activations
// ensure half of the particles have activated by 30% of the frames.
final double eAct = totalSteps * 0.3 * activationIllumination.getAveragePhotons();
// Q. Does tOn/tOff change depending on the illumination strength?
imageModel = new ActivationEnergyImageModel(eAct, activationIllumination, settings.getStepsPerSecond() * settings.getTOn() / 1000.0, settings.getStepsPerSecond() * settings.getTOffShort() / 1000.0, settings.getStepsPerSecond() * settings.getTOffLong() / 1000.0, settings.getNBlinksShort(), settings.getNBlinksLong(), createRandomGenerator());
imageModel.setUseGeometricDistribution(settings.getNBlinksGeometricDistribution());
// Only use the correlation if selected for the distribution
if (PHOTON_DISTRIBUTION[PHOTON_CORRELATED].equals(settings.getPhotonDistribution())) {
correlation = settings.getCorrelation();
}
}
imageModel.setPhotonBudgetPerFrame(true);
imageModel.setDiffusion2D(settings.getDiffuse2D());
imageModel.setRotation2D(settings.getRotate2D());
IJ.showStatus("Creating molecules ...");
final SpatialDistribution distribution = createDistribution();
final List<CompoundMoleculeModel> compounds = createCompoundMolecules();
if (compounds == null) {
return;
}
final List<CompoundMoleculeModel> molecules = imageModel.createMolecules(compounds, settings.getParticles(), distribution, settings.getRotateInitialOrientation());
// Activate fluorophores
IJ.showStatus("Creating fluorophores ...");
// Note: molecules list will be converted to compounds containing fluorophores
fluorophores = imageModel.createFluorophores(molecules, totalSteps);
if (fluorophores.isEmpty()) {
IJ.error(TITLE, "No fluorophores created");
return;
}
// Map the fluorophore ID to the compound for mixtures
if (compounds.size() > 1) {
idToCompound = new TIntIntHashMap(fluorophores.size());
for (final FluorophoreSequenceModel l : fluorophores) {
idToCompound.put(l.getId(), l.getLabel());
}
}
IJ.showStatus("Creating localisations ...");
// TODO - Output a molecule Id for each fluorophore if using compound molecules. This allows
// analysis
// of the ratio of trimers, dimers, monomers, etc that could be detected.
totalSteps = checkTotalSteps(totalSteps, fluorophores);
if (totalSteps == 0) {
return;
}
imageModel.setPhotonDistribution(createPhotonDistribution());
try {
imageModel.setConfinementDistribution(createConfinementDistribution());
} catch (final ConfigurationException ex) {
// We asked the user if it was OK to continue and they said no
return;
}
// This should be optimised
imageModel.setConfinementAttempts(10);
final List<LocalisationModel> localisations = imageModel.createImage(molecules, settings.getFixedFraction(), totalSteps, settings.getPhotonsPerSecond() / settings.getStepsPerSecond(), correlation, settings.getRotateDuringSimulation());
// Re-adjust the fluorophores to the correct time
if (settings.getStepsPerSecond() != 1) {
final double scale = 1.0 / settings.getStepsPerSecond();
for (final FluorophoreSequenceModel f : fluorophores) {
f.adjustTime(scale);
}
}
// Integrate the frames
localisationSets = combineSimulationSteps(localisations);
localisationSets = filterToImageBounds(localisationSets);
}
datasetNumber.getAndIncrement();
final List<LocalisationModel> localisations = drawImage(localisationSets);
if (localisations == null || localisations.isEmpty()) {
IJ.error(TITLE, "No localisations created");
return;
}
fluorophores = removeFilteredFluorophores(fluorophores, localisations);
final double signalPerFrame = showSummary(fluorophores, localisations);
if (!benchmarkMode) {
final boolean fullSimulation = (!(simpleMode || spotMode));
saveSimulationParameters(localisations.size(), fullSimulation, signalPerFrame);
}
IJ.showStatus("Saving data ...");
saveFluorophores(fluorophores);
saveImageResults(results);
saveLocalisations(localisations);
// The settings for the filenames may have changed
SettingsManager.writeSettings(settings.build());
IJ.showStatus("Done");
}
use of org.apache.commons.rng.sampling.distribution.PoissonSampler in project GDSC-SMLM by aherbert.
the class CreateData method createBackground.
private float[] createBackground(UniformRandomProvider rng) {
float[] pixels2 = null;
if (settings.getBackground() > 0) {
if (rng == null) {
rng = createRandomGenerator();
}
pixels2 = new float[backgroundPixels.length];
// Add Poisson noise.
if (uniformBackground) {
final double mean = backgroundPixels[0];
// Simulate N photons hitting the image. The total photons (N) is
// the mean for each pixel multiplied by the number of pixels.
// Note: The number of samples (N) must be Poisson distributed, i.e.
// the total amount of photons per frame is Poisson noise.
// The alternative is to sample each pixel from a Poisson distribution. This is slow!
int samples = new PoissonSampler(rng, mean * backgroundPixels.length).sample();
final int upper = pixels2.length;
while (samples-- > 0) {
pixels2[rng.nextInt(upper)] += 1;
}
} else {
for (int i = 0; i < pixels2.length; i++) {
pixels2[i] = PoissonSamplerUtils.nextPoissonSample(rng, backgroundPixels[i]);
}
}
} else {
pixels2 = backgroundPixels.clone();
}
return pixels2;
}
use of org.apache.commons.rng.sampling.distribution.PoissonSampler in project GDSC-SMLM by aherbert.
the class GradientCalculatorSpeedTest method mleCalculatorComputesLogLikelihoodRatio.
@SeededTest
void mleCalculatorComputesLogLikelihoodRatio(RandomSeed seed) {
final EllipticalGaussian2DFunction func = new EllipticalGaussian2DFunction(1, blockWidth, blockWidth);
final int n = blockWidth * blockWidth;
final double[] a = new double[1 + Gaussian2DFunction.PARAMETERS_PER_PEAK];
final UniformRandomProvider rng = RngUtils.create(seed.getSeed());
final DoubleDoubleBiPredicate predicate = TestHelper.doublesAreClose(1e-10, 0);
for (int run = 5; run-- > 0; ) {
a[Gaussian2DFunction.BACKGROUND] = random(rng, background);
a[Gaussian2DFunction.SIGNAL] = random(rng, amplitude);
a[Gaussian2DFunction.ANGLE] = random(rng, angle);
a[Gaussian2DFunction.X_POSITION] = random(rng, xpos);
a[Gaussian2DFunction.Y_POSITION] = random(rng, ypos);
a[Gaussian2DFunction.X_SD] = random(rng, xwidth);
a[Gaussian2DFunction.Y_SD] = random(rng, ywidth);
// Simulate Poisson process
func.initialise(a);
final double[] u = new double[n];
final double[] x = new double[n];
for (int i = 0; i < n; i++) {
final double value = func.eval(i);
u[i] = value;
// Add random Poisson noise
if (value > 0) {
x[i] = new PoissonSampler(rng, value).sample();
}
}
final int ng = func.getNumberOfGradients();
final double[][] alpha = new double[ng][ng];
final double[] beta = new double[ng];
final GradientCalculator calc = GradientCalculatorUtils.newCalculator(ng, true);
final double llr = PoissonCalculator.logLikelihoodRatio(u, x);
final double llr2 = calc.findLinearised(n, x, a, alpha, beta, func);
// logger.fine(FunctionUtils.getSupplier("llr=%f, llr2=%f", llr, llr2));
TestAssertions.assertTest(llr, llr2, predicate, "Log-likelihood ratio");
}
}
use of org.apache.commons.rng.sampling.distribution.PoissonSampler in project GDSC-SMLM by aherbert.
the class EmGainAnalysis method simulateFromPoissonGammaGaussian.
/**
* Randomly generate a histogram from poisson-gamma-gaussian samples.
*
* @return The histogram
*/
private int[] simulateFromPoissonGammaGaussian() {
// Randomly sample
final UniformRandomProvider rng = UniformRandomProviders.create();
final PoissonSampler poisson = new PoissonSampler(rng, settings.settingPhotons);
final MarsagliaTsangGammaSampler gamma = new MarsagliaTsangGammaSampler(rng, settings.settingPhotons, settings.settingGain);
final NormalizedGaussianSampler gauss = SamplerUtils.createNormalizedGaussianSampler(rng);
final int steps = settings.simulationSize;
final int[] samples = new int[steps];
for (int n = 0; n < steps; n++) {
if (n % 64 == 0) {
IJ.showProgress(n, steps);
}
// Poisson
double sample = poisson.sample();
// Gamma
if (sample > 0) {
gamma.setAlpha(sample);
sample = gamma.sample();
}
// Gaussian
sample += settings.settingNoise * gauss.sample();
// Convert the sample to a count
samples[n] = (int) Math.round(sample + settings.settingBias);
}
final int max = MathUtils.max(samples);
final int[] histogram = new int[max + 1];
for (final int s : samples) {
histogram[s]++;
}
return histogram;
}
Aggregations