use of org.apache.flink.api.common.operators.UnaryOperatorInformation in project flink by apache.
the class DistinctOperator method translateToDataFlow.
@Override
protected org.apache.flink.api.common.operators.SingleInputOperator<?, T, ?> translateToDataFlow(Operator<T> input) {
final ReduceFunction<T> function = new DistinctFunction<>();
String name = getName() != null ? getName() : "Distinct at " + distinctLocationName;
if (keys instanceof Keys.ExpressionKeys) {
int[] logicalKeyPositions = keys.computeLogicalKeyPositions();
UnaryOperatorInformation<T, T> operatorInfo = new UnaryOperatorInformation<>(getInputType(), getResultType());
ReduceOperatorBase<T, ReduceFunction<T>> po = new ReduceOperatorBase<>(function, operatorInfo, logicalKeyPositions, name);
po.setCombineHint(hint);
po.setInput(input);
po.setParallelism(getParallelism());
// make sure that distinct preserves the partitioning for the fields on which they operate
if (getType().isTupleType()) {
SingleInputSemanticProperties sProps = new SingleInputSemanticProperties();
for (int field : keys.computeLogicalKeyPositions()) {
sProps.addForwardedField(field, field);
}
po.setSemanticProperties(sProps);
}
return po;
} else if (keys instanceof SelectorFunctionKeys) {
@SuppressWarnings("unchecked") SelectorFunctionKeys<T, ?> selectorKeys = (SelectorFunctionKeys<T, ?>) keys;
org.apache.flink.api.common.operators.SingleInputOperator<?, T, ?> po = translateSelectorFunctionDistinct(selectorKeys, function, getResultType(), name, input, parallelism, hint);
return po;
} else {
throw new UnsupportedOperationException("Unrecognized key type.");
}
}
use of org.apache.flink.api.common.operators.UnaryOperatorInformation in project flink by apache.
the class GroupCombineOperator method translateToDataFlow.
// --------------------------------------------------------------------------------------------
// Translation
// --------------------------------------------------------------------------------------------
@Override
protected GroupCombineOperatorBase<?, OUT, ?> translateToDataFlow(Operator<IN> input) {
String name = getName() != null ? getName() : "GroupCombine at " + defaultName;
// distinguish between grouped reduce and non-grouped reduce
if (grouper == null) {
// non grouped reduce
UnaryOperatorInformation<IN, OUT> operatorInfo = new UnaryOperatorInformation<>(getInputType(), getResultType());
GroupCombineOperatorBase<IN, OUT, GroupCombineFunction<IN, OUT>> po = new GroupCombineOperatorBase<>(function, operatorInfo, new int[0], name);
po.setInput(input);
// the parallelism for a non grouped reduce can only be 1
po.setParallelism(1);
return po;
}
if (grouper.getKeys() instanceof SelectorFunctionKeys) {
@SuppressWarnings("unchecked") SelectorFunctionKeys<IN, ?> selectorKeys = (SelectorFunctionKeys<IN, ?>) grouper.getKeys();
if (grouper instanceof SortedGrouping) {
SortedGrouping<IN> sortedGrouping = (SortedGrouping<IN>) grouper;
SelectorFunctionKeys<IN, ?> sortKeys = sortedGrouping.getSortSelectionFunctionKey();
Ordering groupOrder = sortedGrouping.getGroupOrdering();
PlanUnwrappingSortedGroupCombineOperator<IN, OUT, ?, ?> po = translateSelectorFunctionSortedReducer(selectorKeys, sortKeys, groupOrder, function, getResultType(), name, input);
po.setParallelism(this.getParallelism());
return po;
} else {
PlanUnwrappingGroupCombineOperator<IN, OUT, ?> po = translateSelectorFunctionReducer(selectorKeys, function, getResultType(), name, input);
po.setParallelism(this.getParallelism());
return po;
}
} else if (grouper.getKeys() instanceof Keys.ExpressionKeys) {
int[] logicalKeyPositions = grouper.getKeys().computeLogicalKeyPositions();
UnaryOperatorInformation<IN, OUT> operatorInfo = new UnaryOperatorInformation<>(getInputType(), getResultType());
GroupCombineOperatorBase<IN, OUT, GroupCombineFunction<IN, OUT>> po = new GroupCombineOperatorBase<>(function, operatorInfo, logicalKeyPositions, name);
po.setInput(input);
po.setParallelism(getParallelism());
// set group order
if (grouper instanceof SortedGrouping) {
SortedGrouping<IN> sortedGrouper = (SortedGrouping<IN>) grouper;
int[] sortKeyPositions = sortedGrouper.getGroupSortKeyPositions();
Order[] sortOrders = sortedGrouper.getGroupSortOrders();
Ordering o = new Ordering();
for (int i = 0; i < sortKeyPositions.length; i++) {
o.appendOrdering(sortKeyPositions[i], null, sortOrders[i]);
}
po.setGroupOrder(o);
}
return po;
} else {
throw new UnsupportedOperationException("Unrecognized key type.");
}
}
use of org.apache.flink.api.common.operators.UnaryOperatorInformation in project flink by apache.
the class GroupReduceOperator method translateToDataFlow.
// --------------------------------------------------------------------------------------------
// Translation
// --------------------------------------------------------------------------------------------
@Override
@SuppressWarnings("unchecked")
protected GroupReduceOperatorBase<?, OUT, ?> translateToDataFlow(Operator<IN> input) {
String name = getName() != null ? getName() : "GroupReduce at " + defaultName;
// wrap CombineFunction in GroupCombineFunction if combinable
if (combinable && function instanceof CombineFunction<?, ?>) {
this.function = function instanceof RichGroupReduceFunction<?, ?> ? new RichCombineToGroupCombineWrapper((RichGroupReduceFunction<?, ?>) function) : new CombineToGroupCombineWrapper((CombineFunction<?, ?>) function);
}
// distinguish between grouped reduce and non-grouped reduce
if (grouper == null) {
// non grouped reduce
UnaryOperatorInformation<IN, OUT> operatorInfo = new UnaryOperatorInformation<>(getInputType(), getResultType());
GroupReduceOperatorBase<IN, OUT, GroupReduceFunction<IN, OUT>> po = new GroupReduceOperatorBase<>(function, operatorInfo, new int[0], name);
po.setCombinable(combinable);
po.setInput(input);
// the parallelism for a non grouped reduce can only be 1
po.setParallelism(1);
return po;
}
if (grouper.getKeys() instanceof SelectorFunctionKeys) {
@SuppressWarnings("unchecked") SelectorFunctionKeys<IN, ?> selectorKeys = (SelectorFunctionKeys<IN, ?>) grouper.getKeys();
if (grouper instanceof SortedGrouping) {
SortedGrouping<IN> sortedGrouping = (SortedGrouping<IN>) grouper;
SelectorFunctionKeys<IN, ?> sortKeys = sortedGrouping.getSortSelectionFunctionKey();
Ordering groupOrder = sortedGrouping.getGroupOrdering();
PlanUnwrappingSortedReduceGroupOperator<IN, OUT, ?, ?> po = translateSelectorFunctionSortedReducer(selectorKeys, sortKeys, groupOrder, function, getResultType(), name, input, isCombinable());
po.setParallelism(this.getParallelism());
po.setCustomPartitioner(grouper.getCustomPartitioner());
return po;
} else {
PlanUnwrappingReduceGroupOperator<IN, OUT, ?> po = translateSelectorFunctionReducer(selectorKeys, function, getResultType(), name, input, isCombinable());
po.setParallelism(this.getParallelism());
po.setCustomPartitioner(grouper.getCustomPartitioner());
return po;
}
} else if (grouper.getKeys() instanceof ExpressionKeys) {
int[] logicalKeyPositions = grouper.getKeys().computeLogicalKeyPositions();
UnaryOperatorInformation<IN, OUT> operatorInfo = new UnaryOperatorInformation<>(getInputType(), getResultType());
GroupReduceOperatorBase<IN, OUT, GroupReduceFunction<IN, OUT>> po = new GroupReduceOperatorBase<>(function, operatorInfo, logicalKeyPositions, name);
po.setCombinable(combinable);
po.setInput(input);
po.setParallelism(getParallelism());
po.setCustomPartitioner(grouper.getCustomPartitioner());
// set group order
if (grouper instanceof SortedGrouping) {
SortedGrouping<IN> sortedGrouper = (SortedGrouping<IN>) grouper;
int[] sortKeyPositions = sortedGrouper.getGroupSortKeyPositions();
Order[] sortOrders = sortedGrouper.getGroupSortOrders();
Ordering o = new Ordering();
for (int i = 0; i < sortKeyPositions.length; i++) {
o.appendOrdering(sortKeyPositions[i], null, sortOrders[i]);
}
po.setGroupOrder(o);
}
return po;
} else {
throw new UnsupportedOperationException("Unrecognized key type.");
}
}
use of org.apache.flink.api.common.operators.UnaryOperatorInformation in project flink by apache.
the class RangePartitionRewriter method rewriteRangePartitionChannel.
private List<Channel> rewriteRangePartitionChannel(Channel channel) {
final List<Channel> sourceNewOutputChannels = new ArrayList<>();
final PlanNode sourceNode = channel.getSource();
final PlanNode targetNode = channel.getTarget();
final int sourceParallelism = sourceNode.getParallelism();
final int targetParallelism = targetNode.getParallelism();
final Costs defaultZeroCosts = new Costs(0, 0, 0);
final TypeComparatorFactory<?> comparator = Utils.getShipComparator(channel, this.plan.getOriginalPlan().getExecutionConfig());
// 1. Fixed size sample in each partitions.
final int sampleSize = SAMPLES_PER_PARTITION * targetParallelism;
final SampleInPartition sampleInPartition = new SampleInPartition(false, sampleSize, SEED);
final TypeInformation<?> sourceOutputType = sourceNode.getOptimizerNode().getOperator().getOperatorInfo().getOutputType();
final TypeInformation<IntermediateSampleData> isdTypeInformation = TypeExtractor.getForClass(IntermediateSampleData.class);
final UnaryOperatorInformation sipOperatorInformation = new UnaryOperatorInformation(sourceOutputType, isdTypeInformation);
final MapPartitionOperatorBase sipOperatorBase = new MapPartitionOperatorBase(sampleInPartition, sipOperatorInformation, SIP_NAME);
final MapPartitionNode sipNode = new MapPartitionNode(sipOperatorBase);
final Channel sipChannel = new Channel(sourceNode, TempMode.NONE);
sipChannel.setShipStrategy(ShipStrategyType.FORWARD, DataExchangeMode.PIPELINED);
final SingleInputPlanNode sipPlanNode = new SingleInputPlanNode(sipNode, SIP_NAME, sipChannel, DriverStrategy.MAP_PARTITION);
sipNode.setParallelism(sourceParallelism);
sipPlanNode.setParallelism(sourceParallelism);
sipPlanNode.initProperties(new GlobalProperties(), new LocalProperties());
sipPlanNode.setCosts(defaultZeroCosts);
sipChannel.setTarget(sipPlanNode);
this.plan.getAllNodes().add(sipPlanNode);
sourceNewOutputChannels.add(sipChannel);
// 2. Fixed size sample in a single coordinator.
final SampleInCoordinator sampleInCoordinator = new SampleInCoordinator(false, sampleSize, SEED);
final UnaryOperatorInformation sicOperatorInformation = new UnaryOperatorInformation(isdTypeInformation, sourceOutputType);
final GroupReduceOperatorBase sicOperatorBase = new GroupReduceOperatorBase(sampleInCoordinator, sicOperatorInformation, SIC_NAME);
final GroupReduceNode sicNode = new GroupReduceNode(sicOperatorBase);
final Channel sicChannel = new Channel(sipPlanNode, TempMode.NONE);
sicChannel.setShipStrategy(ShipStrategyType.FORWARD, DataExchangeMode.PIPELINED);
final SingleInputPlanNode sicPlanNode = new SingleInputPlanNode(sicNode, SIC_NAME, sicChannel, DriverStrategy.ALL_GROUP_REDUCE);
sicNode.setParallelism(1);
sicPlanNode.setParallelism(1);
sicPlanNode.initProperties(new GlobalProperties(), new LocalProperties());
sicPlanNode.setCosts(defaultZeroCosts);
sicChannel.setTarget(sicPlanNode);
sipPlanNode.addOutgoingChannel(sicChannel);
this.plan.getAllNodes().add(sicPlanNode);
// 3. Use sampled data to build range boundaries.
final RangeBoundaryBuilder rangeBoundaryBuilder = new RangeBoundaryBuilder(comparator, targetParallelism);
final TypeInformation<CommonRangeBoundaries> rbTypeInformation = TypeExtractor.getForClass(CommonRangeBoundaries.class);
final UnaryOperatorInformation rbOperatorInformation = new UnaryOperatorInformation(sourceOutputType, rbTypeInformation);
final MapPartitionOperatorBase rbOperatorBase = new MapPartitionOperatorBase(rangeBoundaryBuilder, rbOperatorInformation, RB_NAME);
final MapPartitionNode rbNode = new MapPartitionNode(rbOperatorBase);
final Channel rbChannel = new Channel(sicPlanNode, TempMode.NONE);
rbChannel.setShipStrategy(ShipStrategyType.FORWARD, DataExchangeMode.PIPELINED);
final SingleInputPlanNode rbPlanNode = new SingleInputPlanNode(rbNode, RB_NAME, rbChannel, DriverStrategy.MAP_PARTITION);
rbNode.setParallelism(1);
rbPlanNode.setParallelism(1);
rbPlanNode.initProperties(new GlobalProperties(), new LocalProperties());
rbPlanNode.setCosts(defaultZeroCosts);
rbChannel.setTarget(rbPlanNode);
sicPlanNode.addOutgoingChannel(rbChannel);
this.plan.getAllNodes().add(rbPlanNode);
// 4. Take range boundaries as broadcast input and take the tuple of partition id and record as output.
final AssignRangeIndex assignRangeIndex = new AssignRangeIndex(comparator);
final TypeInformation<Tuple2> ariOutputTypeInformation = new TupleTypeInfo<>(BasicTypeInfo.INT_TYPE_INFO, sourceOutputType);
final UnaryOperatorInformation ariOperatorInformation = new UnaryOperatorInformation(sourceOutputType, ariOutputTypeInformation);
final MapPartitionOperatorBase ariOperatorBase = new MapPartitionOperatorBase(assignRangeIndex, ariOperatorInformation, ARI_NAME);
final MapPartitionNode ariNode = new MapPartitionNode(ariOperatorBase);
final Channel ariChannel = new Channel(sourceNode, TempMode.NONE);
// To avoid deadlock, set the DataExchangeMode of channel between source node and this to Batch.
ariChannel.setShipStrategy(ShipStrategyType.FORWARD, DataExchangeMode.BATCH);
final SingleInputPlanNode ariPlanNode = new SingleInputPlanNode(ariNode, ARI_NAME, ariChannel, DriverStrategy.MAP_PARTITION);
ariNode.setParallelism(sourceParallelism);
ariPlanNode.setParallelism(sourceParallelism);
ariPlanNode.initProperties(new GlobalProperties(), new LocalProperties());
ariPlanNode.setCosts(defaultZeroCosts);
ariChannel.setTarget(ariPlanNode);
this.plan.getAllNodes().add(ariPlanNode);
sourceNewOutputChannels.add(ariChannel);
final NamedChannel broadcastChannel = new NamedChannel("RangeBoundaries", rbPlanNode);
broadcastChannel.setShipStrategy(ShipStrategyType.BROADCAST, DataExchangeMode.PIPELINED);
broadcastChannel.setTarget(ariPlanNode);
List<NamedChannel> broadcastChannels = new ArrayList<>(1);
broadcastChannels.add(broadcastChannel);
ariPlanNode.setBroadcastInputs(broadcastChannels);
// 5. Remove the partition id.
final Channel partChannel = new Channel(ariPlanNode, TempMode.NONE);
final FieldList keys = new FieldList(0);
partChannel.setShipStrategy(ShipStrategyType.PARTITION_CUSTOM, keys, idPartitioner, DataExchangeMode.PIPELINED);
ariPlanNode.addOutgoingChannel(partChannel);
final RemoveRangeIndex partitionIDRemoveWrapper = new RemoveRangeIndex();
final UnaryOperatorInformation prOperatorInformation = new UnaryOperatorInformation(ariOutputTypeInformation, sourceOutputType);
final MapOperatorBase prOperatorBase = new MapOperatorBase(partitionIDRemoveWrapper, prOperatorInformation, PR_NAME);
final MapNode prRemoverNode = new MapNode(prOperatorBase);
final SingleInputPlanNode prPlanNode = new SingleInputPlanNode(prRemoverNode, PR_NAME, partChannel, DriverStrategy.MAP);
partChannel.setTarget(prPlanNode);
prRemoverNode.setParallelism(targetParallelism);
prPlanNode.setParallelism(targetParallelism);
GlobalProperties globalProperties = new GlobalProperties();
globalProperties.setRangePartitioned(new Ordering(0, null, Order.ASCENDING));
prPlanNode.initProperties(globalProperties, new LocalProperties());
prPlanNode.setCosts(defaultZeroCosts);
this.plan.getAllNodes().add(prPlanNode);
// 6. Connect to target node.
channel.setSource(prPlanNode);
channel.setShipStrategy(ShipStrategyType.FORWARD, DataExchangeMode.PIPELINED);
prPlanNode.addOutgoingChannel(channel);
return sourceNewOutputChannels;
}
Aggregations