Search in sources :

Example 1 with PlanNode

use of org.apache.flink.optimizer.plan.PlanNode in project flink by apache.

the class OptimizerNode method areBranchCompatible.

/**
	 * Checks whether to candidate plans for the sub-plan of this node are comparable. The two
	 * alternative plans are comparable, if
	 * 
	 * a) There is no branch in the sub-plan of this node
	 * b) Both candidates have the same candidate as the child at the last open branch. 
	 * 
	 * @param plan1 The root node of the first candidate plan.
	 * @param plan2 The root node of the second candidate plan.
	 * @return True if the nodes are branch compatible in the inputs.
	 */
protected boolean areBranchCompatible(PlanNode plan1, PlanNode plan2) {
    if (plan1 == null || plan2 == null) {
        throw new NullPointerException();
    }
    // in most plans, that will be the dominant case
    if (this.hereJoinedBranches == null || this.hereJoinedBranches.isEmpty()) {
        return true;
    }
    for (OptimizerNode joinedBrancher : hereJoinedBranches) {
        final PlanNode branch1Cand = plan1.getCandidateAtBranchPoint(joinedBrancher);
        final PlanNode branch2Cand = plan2.getCandidateAtBranchPoint(joinedBrancher);
        if (branch1Cand != null && branch2Cand != null && branch1Cand != branch2Cand) {
            return false;
        }
    }
    return true;
}
Also used : PlanNode(org.apache.flink.optimizer.plan.PlanNode)

Example 2 with PlanNode

use of org.apache.flink.optimizer.plan.PlanNode in project flink by apache.

the class OptimizerNode method prunePlanAlternativesWithCommonBranching.

protected void prunePlanAlternativesWithCommonBranching(List<PlanNode> plans) {
    // for each interesting property, which plans are cheapest
    final RequestedGlobalProperties[] gps = this.intProps.getGlobalProperties().toArray(new RequestedGlobalProperties[this.intProps.getGlobalProperties().size()]);
    final RequestedLocalProperties[] lps = this.intProps.getLocalProperties().toArray(new RequestedLocalProperties[this.intProps.getLocalProperties().size()]);
    final PlanNode[][] toKeep = new PlanNode[gps.length][];
    final PlanNode[] cheapestForGlobal = new PlanNode[gps.length];
    // the overall cheapest plan
    PlanNode cheapest = null;
    // go over all plans from the list
    for (PlanNode candidate : plans) {
        // check if that plan is the overall cheapest
        if (cheapest == null || (cheapest.getCumulativeCosts().compareTo(candidate.getCumulativeCosts()) > 0)) {
            cheapest = candidate;
        }
        // find the interesting global properties that this plan matches
        for (int i = 0; i < gps.length; i++) {
            if (gps[i].isMetBy(candidate.getGlobalProperties())) {
                if (cheapestForGlobal[i] == null || (cheapestForGlobal[i].getCumulativeCosts().compareTo(candidate.getCumulativeCosts()) > 0)) {
                    cheapestForGlobal[i] = candidate;
                }
                final PlanNode[] localMatches;
                if (toKeep[i] == null) {
                    localMatches = new PlanNode[lps.length];
                    toKeep[i] = localMatches;
                } else {
                    localMatches = toKeep[i];
                }
                for (int k = 0; k < lps.length; k++) {
                    if (lps[k].isMetBy(candidate.getLocalProperties())) {
                        final PlanNode previous = localMatches[k];
                        if (previous == null || previous.getCumulativeCosts().compareTo(candidate.getCumulativeCosts()) > 0) {
                            // this one is cheaper!
                            localMatches[k] = candidate;
                        }
                    }
                }
            }
        }
    }
    // all plans are set now
    plans.clear();
    // add the cheapest plan
    if (cheapest != null) {
        plans.add(cheapest);
        // remember that that plan is in the set
        cheapest.setPruningMarker();
    }
    // add all others, which are optimal for some interesting properties
    for (int i = 0; i < gps.length; i++) {
        if (toKeep[i] != null) {
            final PlanNode[] localMatches = toKeep[i];
            for (final PlanNode n : localMatches) {
                if (n != null && !n.isPruneMarkerSet()) {
                    n.setPruningMarker();
                    plans.add(n);
                }
            }
        }
        if (cheapestForGlobal[i] != null) {
            final PlanNode n = cheapestForGlobal[i];
            if (!n.isPruneMarkerSet()) {
                n.setPruningMarker();
                plans.add(n);
            }
        }
    }
}
Also used : RequestedGlobalProperties(org.apache.flink.optimizer.dataproperties.RequestedGlobalProperties) RequestedLocalProperties(org.apache.flink.optimizer.dataproperties.RequestedLocalProperties) PlanNode(org.apache.flink.optimizer.plan.PlanNode)

Example 3 with PlanNode

use of org.apache.flink.optimizer.plan.PlanNode in project flink by apache.

the class SingleInputNode method getAlternativePlans.

@Override
public List<PlanNode> getAlternativePlans(CostEstimator estimator) {
    // check if we have a cached version
    if (this.cachedPlans != null) {
        return this.cachedPlans;
    }
    boolean childrenSkippedDueToReplicatedInput = false;
    // calculate alternative sub-plans for predecessor
    final List<? extends PlanNode> subPlans = getPredecessorNode().getAlternativePlans(estimator);
    final Set<RequestedGlobalProperties> intGlobal = this.inConn.getInterestingProperties().getGlobalProperties();
    // calculate alternative sub-plans for broadcast inputs
    final List<Set<? extends NamedChannel>> broadcastPlanChannels = new ArrayList<Set<? extends NamedChannel>>();
    List<DagConnection> broadcastConnections = getBroadcastConnections();
    List<String> broadcastConnectionNames = getBroadcastConnectionNames();
    for (int i = 0; i < broadcastConnections.size(); i++) {
        DagConnection broadcastConnection = broadcastConnections.get(i);
        String broadcastConnectionName = broadcastConnectionNames.get(i);
        List<PlanNode> broadcastPlanCandidates = broadcastConnection.getSource().getAlternativePlans(estimator);
        // wrap the plan candidates in named channels
        HashSet<NamedChannel> broadcastChannels = new HashSet<NamedChannel>(broadcastPlanCandidates.size());
        for (PlanNode plan : broadcastPlanCandidates) {
            NamedChannel c = new NamedChannel(broadcastConnectionName, plan);
            DataExchangeMode exMode = DataExchangeMode.select(broadcastConnection.getDataExchangeMode(), ShipStrategyType.BROADCAST, broadcastConnection.isBreakingPipeline());
            c.setShipStrategy(ShipStrategyType.BROADCAST, exMode);
            broadcastChannels.add(c);
        }
        broadcastPlanChannels.add(broadcastChannels);
    }
    final RequestedGlobalProperties[] allValidGlobals;
    {
        Set<RequestedGlobalProperties> pairs = new HashSet<RequestedGlobalProperties>();
        for (OperatorDescriptorSingle ods : getPossibleProperties()) {
            pairs.addAll(ods.getPossibleGlobalProperties());
        }
        allValidGlobals = pairs.toArray(new RequestedGlobalProperties[pairs.size()]);
    }
    final ArrayList<PlanNode> outputPlans = new ArrayList<PlanNode>();
    final ExecutionMode executionMode = this.inConn.getDataExchangeMode();
    final int parallelism = getParallelism();
    final int inParallelism = getPredecessorNode().getParallelism();
    final boolean parallelismChange = inParallelism != parallelism;
    final boolean breaksPipeline = this.inConn.isBreakingPipeline();
    // create all candidates
    for (PlanNode child : subPlans) {
        if (child.getGlobalProperties().isFullyReplicated()) {
            // fully replicated input is always locally forwarded if the parallelism is not changed
            if (parallelismChange) {
                // can not continue with this child
                childrenSkippedDueToReplicatedInput = true;
                continue;
            } else {
                this.inConn.setShipStrategy(ShipStrategyType.FORWARD);
            }
        }
        if (this.inConn.getShipStrategy() == null) {
            // pick the strategy ourselves
            for (RequestedGlobalProperties igps : intGlobal) {
                final Channel c = new Channel(child, this.inConn.getMaterializationMode());
                igps.parameterizeChannel(c, parallelismChange, executionMode, breaksPipeline);
                // ship strategy preserves/establishes them even under changing parallelisms
                if (parallelismChange && !c.getShipStrategy().isNetworkStrategy()) {
                    c.getGlobalProperties().reset();
                }
                // requested properties
                for (RequestedGlobalProperties rgps : allValidGlobals) {
                    if (rgps.isMetBy(c.getGlobalProperties())) {
                        c.setRequiredGlobalProps(rgps);
                        addLocalCandidates(c, broadcastPlanChannels, igps, outputPlans, estimator);
                        break;
                    }
                }
            }
        } else {
            // hint fixed the strategy
            final Channel c = new Channel(child, this.inConn.getMaterializationMode());
            final ShipStrategyType shipStrategy = this.inConn.getShipStrategy();
            final DataExchangeMode exMode = DataExchangeMode.select(executionMode, shipStrategy, breaksPipeline);
            if (this.keys != null) {
                c.setShipStrategy(shipStrategy, this.keys.toFieldList(), exMode);
            } else {
                c.setShipStrategy(shipStrategy, exMode);
            }
            if (parallelismChange) {
                c.adjustGlobalPropertiesForFullParallelismChange();
            }
            // check whether we meet any of the accepted properties
            for (RequestedGlobalProperties rgps : allValidGlobals) {
                if (rgps.isMetBy(c.getGlobalProperties())) {
                    addLocalCandidates(c, broadcastPlanChannels, rgps, outputPlans, estimator);
                    break;
                }
            }
        }
    }
    if (outputPlans.isEmpty()) {
        if (childrenSkippedDueToReplicatedInput) {
            throw new CompilerException("No plan meeting the requirements could be created @ " + this + ". Most likely reason: Invalid use of replicated input.");
        } else {
            throw new CompilerException("No plan meeting the requirements could be created @ " + this + ". Most likely reason: Too restrictive plan hints.");
        }
    }
    // cost and prune the plans
    for (PlanNode node : outputPlans) {
        estimator.costOperator(node);
    }
    prunePlanAlternatives(outputPlans);
    outputPlans.trimToSize();
    this.cachedPlans = outputPlans;
    return outputPlans;
}
Also used : HashSet(java.util.HashSet) Set(java.util.Set) FieldSet(org.apache.flink.api.common.operators.util.FieldSet) ArrayList(java.util.ArrayList) ShipStrategyType(org.apache.flink.runtime.operators.shipping.ShipStrategyType) OperatorDescriptorSingle(org.apache.flink.optimizer.operators.OperatorDescriptorSingle) PlanNode(org.apache.flink.optimizer.plan.PlanNode) SingleInputPlanNode(org.apache.flink.optimizer.plan.SingleInputPlanNode) DataExchangeMode(org.apache.flink.runtime.io.network.DataExchangeMode) CompilerException(org.apache.flink.optimizer.CompilerException) HashSet(java.util.HashSet) RequestedGlobalProperties(org.apache.flink.optimizer.dataproperties.RequestedGlobalProperties) Channel(org.apache.flink.optimizer.plan.Channel) NamedChannel(org.apache.flink.optimizer.plan.NamedChannel) ExecutionMode(org.apache.flink.api.common.ExecutionMode) NamedChannel(org.apache.flink.optimizer.plan.NamedChannel)

Example 4 with PlanNode

use of org.apache.flink.optimizer.plan.PlanNode in project flink by apache.

the class SingleInputNode method instantiateCandidate.

protected void instantiateCandidate(OperatorDescriptorSingle dps, Channel in, List<Set<? extends NamedChannel>> broadcastPlanChannels, List<PlanNode> target, CostEstimator estimator, RequestedGlobalProperties globPropsReq, RequestedLocalProperties locPropsReq) {
    final PlanNode inputSource = in.getSource();
    for (List<NamedChannel> broadcastChannelsCombination : Sets.cartesianProduct(broadcastPlanChannels)) {
        boolean validCombination = true;
        boolean requiresPipelinebreaker = false;
        // check whether the broadcast inputs use the same plan candidate at the branching point
        for (int i = 0; i < broadcastChannelsCombination.size(); i++) {
            NamedChannel nc = broadcastChannelsCombination.get(i);
            PlanNode bcSource = nc.getSource();
            // check branch compatibility against input
            if (!areBranchCompatible(bcSource, inputSource)) {
                validCombination = false;
                break;
            }
            // check branch compatibility against all other broadcast variables
            for (int k = 0; k < i; k++) {
                PlanNode otherBcSource = broadcastChannelsCombination.get(k).getSource();
                if (!areBranchCompatible(bcSource, otherBcSource)) {
                    validCombination = false;
                    break;
                }
            }
            // check if there is a common predecessor and whether there is a dam on the way to all common predecessors
            if (in.isOnDynamicPath() && this.hereJoinedBranches != null) {
                for (OptimizerNode brancher : this.hereJoinedBranches) {
                    PlanNode candAtBrancher = in.getSource().getCandidateAtBranchPoint(brancher);
                    if (candAtBrancher == null) {
                        // closed branch between two broadcast variables
                        continue;
                    }
                    SourceAndDamReport res = in.getSource().hasDamOnPathDownTo(candAtBrancher);
                    if (res == NOT_FOUND) {
                        throw new CompilerException("Bug: Tracing dams for deadlock detection is broken.");
                    } else if (res == FOUND_SOURCE) {
                        requiresPipelinebreaker = true;
                        break;
                    } else if (res == FOUND_SOURCE_AND_DAM) {
                    // good
                    } else {
                        throw new CompilerException();
                    }
                }
            }
        }
        if (!validCombination) {
            continue;
        }
        if (requiresPipelinebreaker) {
            in.setTempMode(in.getTempMode().makePipelineBreaker());
        }
        final SingleInputPlanNode node = dps.instantiate(in, this);
        node.setBroadcastInputs(broadcastChannelsCombination);
        // compute how the strategy affects the properties
        GlobalProperties gProps = in.getGlobalProperties().clone();
        LocalProperties lProps = in.getLocalProperties().clone();
        gProps = dps.computeGlobalProperties(gProps);
        lProps = dps.computeLocalProperties(lProps);
        // filter by the user code field copies
        gProps = gProps.filterBySemanticProperties(getSemanticPropertiesForGlobalPropertyFiltering(), 0);
        lProps = lProps.filterBySemanticProperties(getSemanticPropertiesForLocalPropertyFiltering(), 0);
        // apply
        node.initProperties(gProps, lProps);
        node.updatePropertiesWithUniqueSets(getUniqueFields());
        target.add(node);
    }
}
Also used : SingleInputPlanNode(org.apache.flink.optimizer.plan.SingleInputPlanNode) PlanNode(org.apache.flink.optimizer.plan.PlanNode) SingleInputPlanNode(org.apache.flink.optimizer.plan.SingleInputPlanNode) RequestedGlobalProperties(org.apache.flink.optimizer.dataproperties.RequestedGlobalProperties) GlobalProperties(org.apache.flink.optimizer.dataproperties.GlobalProperties) SourceAndDamReport(org.apache.flink.optimizer.plan.PlanNode.SourceAndDamReport) CompilerException(org.apache.flink.optimizer.CompilerException) NamedChannel(org.apache.flink.optimizer.plan.NamedChannel) RequestedLocalProperties(org.apache.flink.optimizer.dataproperties.RequestedLocalProperties) LocalProperties(org.apache.flink.optimizer.dataproperties.LocalProperties)

Example 5 with PlanNode

use of org.apache.flink.optimizer.plan.PlanNode in project flink by apache.

the class BulkIterationNode method instantiateCandidate.

@SuppressWarnings("unchecked")
@Override
protected void instantiateCandidate(OperatorDescriptorSingle dps, Channel in, List<Set<? extends NamedChannel>> broadcastPlanChannels, List<PlanNode> target, CostEstimator estimator, RequestedGlobalProperties globPropsReq, RequestedLocalProperties locPropsReq) {
    // NOTES ON THE ENUMERATION OF THE STEP FUNCTION PLANS:
    // Whenever we instantiate the iteration, we enumerate new candidates for the step function.
    // That way, we make sure we have an appropriate plan for each candidate for the initial partial solution,
    // we have a fitting candidate for the step function (often, work is pushed out of the step function).
    // Among the candidates of the step function, we keep only those that meet the requested properties of the
    // current candidate initial partial solution. That makes sure these properties exist at the beginning of
    // the successive iteration.
    // 1) Because we enumerate multiple times, we may need to clean the cached plans
    //    before starting another enumeration
    this.nextPartialSolution.accept(PlanCacheCleaner.INSTANCE);
    if (this.terminationCriterion != null) {
        this.terminationCriterion.accept(PlanCacheCleaner.INSTANCE);
    }
    // 2) Give the partial solution the properties of the current candidate for the initial partial solution
    this.partialSolution.setCandidateProperties(in.getGlobalProperties(), in.getLocalProperties(), in);
    final BulkPartialSolutionPlanNode pspn = this.partialSolution.getCurrentPartialSolutionPlanNode();
    // 3) Get the alternative plans
    List<PlanNode> candidates = this.nextPartialSolution.getAlternativePlans(estimator);
    // 4) Make sure that the beginning of the step function does not assume properties that 
    //    are not also produced by the end of the step function.
    {
        List<PlanNode> newCandidates = new ArrayList<PlanNode>();
        for (Iterator<PlanNode> planDeleter = candidates.iterator(); planDeleter.hasNext(); ) {
            PlanNode candidate = planDeleter.next();
            GlobalProperties atEndGlobal = candidate.getGlobalProperties();
            LocalProperties atEndLocal = candidate.getLocalProperties();
            FeedbackPropertiesMeetRequirementsReport report = candidate.checkPartialSolutionPropertiesMet(pspn, atEndGlobal, atEndLocal);
            if (report == FeedbackPropertiesMeetRequirementsReport.NO_PARTIAL_SOLUTION) {
            // depends only through broadcast variable on the partial solution
            } else if (report == FeedbackPropertiesMeetRequirementsReport.NOT_MET) {
                // attach a no-op node through which we create the properties of the original input
                Channel toNoOp = new Channel(candidate);
                globPropsReq.parameterizeChannel(toNoOp, false, rootConnection.getDataExchangeMode(), false);
                locPropsReq.parameterizeChannel(toNoOp);
                NoOpUnaryUdfOp noOpUnaryUdfOp = new NoOpUnaryUdfOp<>();
                noOpUnaryUdfOp.setInput(candidate.getProgramOperator());
                UnaryOperatorNode rebuildPropertiesNode = new UnaryOperatorNode("Rebuild Partial Solution Properties", noOpUnaryUdfOp, true);
                rebuildPropertiesNode.setParallelism(candidate.getParallelism());
                SingleInputPlanNode rebuildPropertiesPlanNode = new SingleInputPlanNode(rebuildPropertiesNode, "Rebuild Partial Solution Properties", toNoOp, DriverStrategy.UNARY_NO_OP);
                rebuildPropertiesPlanNode.initProperties(toNoOp.getGlobalProperties(), toNoOp.getLocalProperties());
                estimator.costOperator(rebuildPropertiesPlanNode);
                GlobalProperties atEndGlobalModified = rebuildPropertiesPlanNode.getGlobalProperties();
                LocalProperties atEndLocalModified = rebuildPropertiesPlanNode.getLocalProperties();
                if (!(atEndGlobalModified.equals(atEndGlobal) && atEndLocalModified.equals(atEndLocal))) {
                    FeedbackPropertiesMeetRequirementsReport report2 = candidate.checkPartialSolutionPropertiesMet(pspn, atEndGlobalModified, atEndLocalModified);
                    if (report2 != FeedbackPropertiesMeetRequirementsReport.NOT_MET) {
                        newCandidates.add(rebuildPropertiesPlanNode);
                    }
                }
                planDeleter.remove();
            }
        }
        candidates.addAll(newCandidates);
    }
    if (candidates.isEmpty()) {
        return;
    }
    // 5) Create a candidate for the Iteration Node for every remaining plan of the step function.
    if (terminationCriterion == null) {
        for (PlanNode candidate : candidates) {
            BulkIterationPlanNode node = new BulkIterationPlanNode(this, this.getOperator().getName(), in, pspn, candidate);
            GlobalProperties gProps = candidate.getGlobalProperties().clone();
            LocalProperties lProps = candidate.getLocalProperties().clone();
            node.initProperties(gProps, lProps);
            target.add(node);
        }
    } else if (candidates.size() > 0) {
        List<PlanNode> terminationCriterionCandidates = this.terminationCriterion.getAlternativePlans(estimator);
        SingleRootJoiner singleRoot = (SingleRootJoiner) this.singleRoot;
        for (PlanNode candidate : candidates) {
            for (PlanNode terminationCandidate : terminationCriterionCandidates) {
                if (singleRoot.areBranchCompatible(candidate, terminationCandidate)) {
                    BulkIterationPlanNode node = new BulkIterationPlanNode(this, "BulkIteration (" + this.getOperator().getName() + ")", in, pspn, candidate, terminationCandidate);
                    GlobalProperties gProps = candidate.getGlobalProperties().clone();
                    LocalProperties lProps = candidate.getLocalProperties().clone();
                    node.initProperties(gProps, lProps);
                    target.add(node);
                }
            }
        }
    }
}
Also used : FeedbackPropertiesMeetRequirementsReport(org.apache.flink.optimizer.plan.PlanNode.FeedbackPropertiesMeetRequirementsReport) BulkPartialSolutionPlanNode(org.apache.flink.optimizer.plan.BulkPartialSolutionPlanNode) Channel(org.apache.flink.optimizer.plan.Channel) NamedChannel(org.apache.flink.optimizer.plan.NamedChannel) SingleInputPlanNode(org.apache.flink.optimizer.plan.SingleInputPlanNode) BulkIterationPlanNode(org.apache.flink.optimizer.plan.BulkIterationPlanNode) BulkPartialSolutionPlanNode(org.apache.flink.optimizer.plan.BulkPartialSolutionPlanNode) PlanNode(org.apache.flink.optimizer.plan.PlanNode) SingleInputPlanNode(org.apache.flink.optimizer.plan.SingleInputPlanNode) RequestedGlobalProperties(org.apache.flink.optimizer.dataproperties.RequestedGlobalProperties) GlobalProperties(org.apache.flink.optimizer.dataproperties.GlobalProperties) SingleRootJoiner(org.apache.flink.optimizer.dag.WorksetIterationNode.SingleRootJoiner) NoOpUnaryUdfOp(org.apache.flink.optimizer.util.NoOpUnaryUdfOp) Iterator(java.util.Iterator) ArrayList(java.util.ArrayList) List(java.util.List) RequestedLocalProperties(org.apache.flink.optimizer.dataproperties.RequestedLocalProperties) LocalProperties(org.apache.flink.optimizer.dataproperties.LocalProperties) BulkIterationPlanNode(org.apache.flink.optimizer.plan.BulkIterationPlanNode)

Aggregations

PlanNode (org.apache.flink.optimizer.plan.PlanNode)43 SingleInputPlanNode (org.apache.flink.optimizer.plan.SingleInputPlanNode)27 DualInputPlanNode (org.apache.flink.optimizer.plan.DualInputPlanNode)25 Channel (org.apache.flink.optimizer.plan.Channel)24 SinkPlanNode (org.apache.flink.optimizer.plan.SinkPlanNode)22 WorksetIterationPlanNode (org.apache.flink.optimizer.plan.WorksetIterationPlanNode)21 CompilerException (org.apache.flink.optimizer.CompilerException)16 NamedChannel (org.apache.flink.optimizer.plan.NamedChannel)16 OptimizedPlan (org.apache.flink.optimizer.plan.OptimizedPlan)15 BulkIterationPlanNode (org.apache.flink.optimizer.plan.BulkIterationPlanNode)14 BulkPartialSolutionPlanNode (org.apache.flink.optimizer.plan.BulkPartialSolutionPlanNode)13 IterationPlanNode (org.apache.flink.optimizer.plan.IterationPlanNode)13 NAryUnionPlanNode (org.apache.flink.optimizer.plan.NAryUnionPlanNode)13 SolutionSetPlanNode (org.apache.flink.optimizer.plan.SolutionSetPlanNode)13 SourcePlanNode (org.apache.flink.optimizer.plan.SourcePlanNode)13 WorksetPlanNode (org.apache.flink.optimizer.plan.WorksetPlanNode)13 Plan (org.apache.flink.api.common.Plan)12 ExecutionEnvironment (org.apache.flink.api.java.ExecutionEnvironment)12 Test (org.junit.Test)12 ArrayList (java.util.ArrayList)11