use of org.apache.flink.optimizer.dataproperties.LocalProperties in project flink by apache.
the class WorksetIterationNode method instantiate.
@SuppressWarnings("unchecked")
@Override
protected void instantiate(OperatorDescriptorDual operator, Channel solutionSetIn, Channel worksetIn, List<Set<? extends NamedChannel>> broadcastPlanChannels, List<PlanNode> target, CostEstimator estimator, RequestedGlobalProperties globPropsReqSolutionSet, RequestedGlobalProperties globPropsReqWorkset, RequestedLocalProperties locPropsReqSolutionSet, RequestedLocalProperties locPropsReqWorkset) {
// check for pipeline breaking using hash join with build on the solution set side
placePipelineBreakersIfNecessary(DriverStrategy.HYBRIDHASH_BUILD_FIRST, solutionSetIn, worksetIn);
// NOTES ON THE ENUMERATION OF THE STEP FUNCTION PLANS:
// Whenever we instantiate the iteration, we enumerate new candidates for the step function.
// That way, we make sure we have an appropriate plan for each candidate for the initial
// partial solution,
// we have a fitting candidate for the step function (often, work is pushed out of the step
// function).
// Among the candidates of the step function, we keep only those that meet the requested
// properties of the
// current candidate initial partial solution. That makes sure these properties exist at the
// beginning of
// every iteration.
// 1) Because we enumerate multiple times, we may need to clean the cached plans
// before starting another enumeration
this.nextWorkset.accept(PlanCacheCleaner.INSTANCE);
this.solutionSetDelta.accept(PlanCacheCleaner.INSTANCE);
// 2) Give the partial solution the properties of the current candidate for the initial
// partial solution
// This concerns currently only the workset.
this.worksetNode.setCandidateProperties(worksetIn.getGlobalProperties(), worksetIn.getLocalProperties(), worksetIn);
this.solutionSetNode.setCandidateProperties(this.partitionedProperties, new LocalProperties(), solutionSetIn);
final SolutionSetPlanNode sspn = this.solutionSetNode.getCurrentSolutionSetPlanNode();
final WorksetPlanNode wspn = this.worksetNode.getCurrentWorksetPlanNode();
// 3) Get the alternative plans
List<PlanNode> solutionSetDeltaCandidates = this.solutionSetDelta.getAlternativePlans(estimator);
List<PlanNode> worksetCandidates = this.nextWorkset.getAlternativePlans(estimator);
// 4) Throw away all that are not compatible with the properties currently requested to the
// initial partial solution
// Make sure that the workset candidates fulfill the input requirements
{
List<PlanNode> newCandidates = new ArrayList<PlanNode>();
for (Iterator<PlanNode> planDeleter = worksetCandidates.iterator(); planDeleter.hasNext(); ) {
PlanNode candidate = planDeleter.next();
GlobalProperties atEndGlobal = candidate.getGlobalProperties();
LocalProperties atEndLocal = candidate.getLocalProperties();
FeedbackPropertiesMeetRequirementsReport report = candidate.checkPartialSolutionPropertiesMet(wspn, atEndGlobal, atEndLocal);
if (report == FeedbackPropertiesMeetRequirementsReport.NO_PARTIAL_SOLUTION) {
// depends only through broadcast variable on the workset solution
} else if (report == FeedbackPropertiesMeetRequirementsReport.NOT_MET) {
// attach a no-op node through which we create the properties of the original
// input
Channel toNoOp = new Channel(candidate);
globPropsReqWorkset.parameterizeChannel(toNoOp, false, nextWorksetRootConnection.getDataExchangeMode(), false);
locPropsReqWorkset.parameterizeChannel(toNoOp);
NoOpUnaryUdfOp noOpUnaryUdfOp = new NoOpUnaryUdfOp<>();
noOpUnaryUdfOp.setInput(candidate.getProgramOperator());
UnaryOperatorNode rebuildWorksetPropertiesNode = new UnaryOperatorNode("Rebuild Workset Properties", noOpUnaryUdfOp, true);
rebuildWorksetPropertiesNode.setParallelism(candidate.getParallelism());
SingleInputPlanNode rebuildWorksetPropertiesPlanNode = new SingleInputPlanNode(rebuildWorksetPropertiesNode, "Rebuild Workset Properties", toNoOp, DriverStrategy.UNARY_NO_OP);
rebuildWorksetPropertiesPlanNode.initProperties(toNoOp.getGlobalProperties(), toNoOp.getLocalProperties());
estimator.costOperator(rebuildWorksetPropertiesPlanNode);
GlobalProperties atEndGlobalModified = rebuildWorksetPropertiesPlanNode.getGlobalProperties();
LocalProperties atEndLocalModified = rebuildWorksetPropertiesPlanNode.getLocalProperties();
if (!(atEndGlobalModified.equals(atEndGlobal) && atEndLocalModified.equals(atEndLocal))) {
FeedbackPropertiesMeetRequirementsReport report2 = candidate.checkPartialSolutionPropertiesMet(wspn, atEndGlobalModified, atEndLocalModified);
if (report2 != FeedbackPropertiesMeetRequirementsReport.NOT_MET) {
newCandidates.add(rebuildWorksetPropertiesPlanNode);
}
}
// remove the original operator and add the modified candidate
planDeleter.remove();
}
}
worksetCandidates.addAll(newCandidates);
}
if (worksetCandidates.isEmpty()) {
return;
}
// sanity check the solution set delta
for (PlanNode solutionSetDeltaCandidate : solutionSetDeltaCandidates) {
SingleInputPlanNode candidate = (SingleInputPlanNode) solutionSetDeltaCandidate;
GlobalProperties gp = candidate.getGlobalProperties();
if (gp.getPartitioning() != PartitioningProperty.HASH_PARTITIONED || gp.getPartitioningFields() == null || !gp.getPartitioningFields().equals(this.solutionSetKeyFields)) {
throw new CompilerException("Bug: The solution set delta is not partitioned.");
}
}
// 5) Create a candidate for the Iteration Node for every remaining plan of the step
// function.
final GlobalProperties gp = new GlobalProperties();
gp.setHashPartitioned(this.solutionSetKeyFields);
gp.addUniqueFieldCombination(this.solutionSetKeyFields);
LocalProperties lp = LocalProperties.EMPTY.addUniqueFields(this.solutionSetKeyFields);
// take all combinations of solution set delta and workset plans
for (PlanNode worksetCandidate : worksetCandidates) {
for (PlanNode solutionSetCandidate : solutionSetDeltaCandidates) {
// check whether they have the same operator at their latest branching point
if (this.singleRoot.areBranchCompatible(solutionSetCandidate, worksetCandidate)) {
SingleInputPlanNode siSolutionDeltaCandidate = (SingleInputPlanNode) solutionSetCandidate;
boolean immediateDeltaUpdate;
// can update on the fly
if (siSolutionDeltaCandidate.getInput().getShipStrategy() == ShipStrategyType.FORWARD && this.solutionDeltaImmediatelyAfterSolutionJoin) {
// sanity check the node and connection
if (siSolutionDeltaCandidate.getDriverStrategy() != DriverStrategy.UNARY_NO_OP || siSolutionDeltaCandidate.getInput().getLocalStrategy() != LocalStrategy.NONE) {
throw new CompilerException("Invalid Solution set delta node.");
}
solutionSetCandidate = siSolutionDeltaCandidate.getInput().getSource();
immediateDeltaUpdate = true;
} else {
// was not partitioned, we need to keep this node.
// mark that we materialize the input
siSolutionDeltaCandidate.getInput().setTempMode(TempMode.PIPELINE_BREAKER);
immediateDeltaUpdate = false;
}
WorksetIterationPlanNode wsNode = new WorksetIterationPlanNode(this, this.getOperator().getName(), solutionSetIn, worksetIn, sspn, wspn, worksetCandidate, solutionSetCandidate);
wsNode.setImmediateSolutionSetUpdate(immediateDeltaUpdate);
wsNode.initProperties(gp, lp);
target.add(wsNode);
}
}
}
}
use of org.apache.flink.optimizer.dataproperties.LocalProperties in project flink by apache.
the class SingleInputNode method instantiateCandidate.
protected void instantiateCandidate(OperatorDescriptorSingle dps, Channel in, List<Set<? extends NamedChannel>> broadcastPlanChannels, List<PlanNode> target, CostEstimator estimator, RequestedGlobalProperties globPropsReq, RequestedLocalProperties locPropsReq) {
final PlanNode inputSource = in.getSource();
for (List<NamedChannel> broadcastChannelsCombination : Sets.cartesianProduct(broadcastPlanChannels)) {
boolean validCombination = true;
boolean requiresPipelinebreaker = false;
// check whether the broadcast inputs use the same plan candidate at the branching point
for (int i = 0; i < broadcastChannelsCombination.size(); i++) {
NamedChannel nc = broadcastChannelsCombination.get(i);
PlanNode bcSource = nc.getSource();
// check branch compatibility against input
if (!areBranchCompatible(bcSource, inputSource)) {
validCombination = false;
break;
}
// check branch compatibility against all other broadcast variables
for (int k = 0; k < i; k++) {
PlanNode otherBcSource = broadcastChannelsCombination.get(k).getSource();
if (!areBranchCompatible(bcSource, otherBcSource)) {
validCombination = false;
break;
}
}
// all common predecessors
if (in.isOnDynamicPath() && this.hereJoinedBranches != null) {
for (OptimizerNode brancher : this.hereJoinedBranches) {
PlanNode candAtBrancher = in.getSource().getCandidateAtBranchPoint(brancher);
if (candAtBrancher == null) {
// closed branch between two broadcast variables
continue;
}
SourceAndDamReport res = in.getSource().hasDamOnPathDownTo(candAtBrancher);
if (res == NOT_FOUND) {
throw new CompilerException("Bug: Tracing dams for deadlock detection is broken.");
} else if (res == FOUND_SOURCE) {
requiresPipelinebreaker = true;
break;
} else if (res == FOUND_SOURCE_AND_DAM) {
// good
} else {
throw new CompilerException();
}
}
}
}
if (!validCombination) {
continue;
}
if (requiresPipelinebreaker) {
in.setTempMode(in.getTempMode().makePipelineBreaker());
}
final SingleInputPlanNode node = dps.instantiate(in, this);
node.setBroadcastInputs(broadcastChannelsCombination);
// compute how the strategy affects the properties
GlobalProperties gProps = in.getGlobalProperties().clone();
LocalProperties lProps = in.getLocalProperties().clone();
gProps = dps.computeGlobalProperties(gProps);
lProps = dps.computeLocalProperties(lProps);
// filter by the user code field copies
gProps = gProps.filterBySemanticProperties(getSemanticPropertiesForGlobalPropertyFiltering(), 0);
lProps = lProps.filterBySemanticProperties(getSemanticPropertiesForLocalPropertyFiltering(), 0);
// apply
node.initProperties(gProps, lProps);
node.updatePropertiesWithUniqueSets(getUniqueFields());
target.add(node);
}
}
use of org.apache.flink.optimizer.dataproperties.LocalProperties in project flink by apache.
the class BulkIterationNode method instantiateCandidate.
@SuppressWarnings("unchecked")
@Override
protected void instantiateCandidate(OperatorDescriptorSingle dps, Channel in, List<Set<? extends NamedChannel>> broadcastPlanChannels, List<PlanNode> target, CostEstimator estimator, RequestedGlobalProperties globPropsReq, RequestedLocalProperties locPropsReq) {
// NOTES ON THE ENUMERATION OF THE STEP FUNCTION PLANS:
// Whenever we instantiate the iteration, we enumerate new candidates for the step function.
// That way, we make sure we have an appropriate plan for each candidate for the initial
// partial solution,
// we have a fitting candidate for the step function (often, work is pushed out of the step
// function).
// Among the candidates of the step function, we keep only those that meet the requested
// properties of the
// current candidate initial partial solution. That makes sure these properties exist at the
// beginning of
// the successive iteration.
// 1) Because we enumerate multiple times, we may need to clean the cached plans
// before starting another enumeration
this.nextPartialSolution.accept(PlanCacheCleaner.INSTANCE);
if (this.terminationCriterion != null) {
this.terminationCriterion.accept(PlanCacheCleaner.INSTANCE);
}
// 2) Give the partial solution the properties of the current candidate for the initial
// partial solution
this.partialSolution.setCandidateProperties(in.getGlobalProperties(), in.getLocalProperties(), in);
final BulkPartialSolutionPlanNode pspn = this.partialSolution.getCurrentPartialSolutionPlanNode();
// 3) Get the alternative plans
List<PlanNode> candidates = this.nextPartialSolution.getAlternativePlans(estimator);
// 4) Make sure that the beginning of the step function does not assume properties that
// are not also produced by the end of the step function.
{
List<PlanNode> newCandidates = new ArrayList<PlanNode>();
for (Iterator<PlanNode> planDeleter = candidates.iterator(); planDeleter.hasNext(); ) {
PlanNode candidate = planDeleter.next();
GlobalProperties atEndGlobal = candidate.getGlobalProperties();
LocalProperties atEndLocal = candidate.getLocalProperties();
FeedbackPropertiesMeetRequirementsReport report = candidate.checkPartialSolutionPropertiesMet(pspn, atEndGlobal, atEndLocal);
if (report == FeedbackPropertiesMeetRequirementsReport.NO_PARTIAL_SOLUTION) {
// depends only through broadcast variable on the partial solution
} else if (report == FeedbackPropertiesMeetRequirementsReport.NOT_MET) {
// attach a no-op node through which we create the properties of the original
// input
Channel toNoOp = new Channel(candidate);
globPropsReq.parameterizeChannel(toNoOp, false, rootConnection.getDataExchangeMode(), false);
locPropsReq.parameterizeChannel(toNoOp);
NoOpUnaryUdfOp noOpUnaryUdfOp = new NoOpUnaryUdfOp<>();
noOpUnaryUdfOp.setInput(candidate.getProgramOperator());
UnaryOperatorNode rebuildPropertiesNode = new UnaryOperatorNode("Rebuild Partial Solution Properties", noOpUnaryUdfOp, true);
rebuildPropertiesNode.setParallelism(candidate.getParallelism());
SingleInputPlanNode rebuildPropertiesPlanNode = new SingleInputPlanNode(rebuildPropertiesNode, "Rebuild Partial Solution Properties", toNoOp, DriverStrategy.UNARY_NO_OP);
rebuildPropertiesPlanNode.initProperties(toNoOp.getGlobalProperties(), toNoOp.getLocalProperties());
estimator.costOperator(rebuildPropertiesPlanNode);
GlobalProperties atEndGlobalModified = rebuildPropertiesPlanNode.getGlobalProperties();
LocalProperties atEndLocalModified = rebuildPropertiesPlanNode.getLocalProperties();
if (!(atEndGlobalModified.equals(atEndGlobal) && atEndLocalModified.equals(atEndLocal))) {
FeedbackPropertiesMeetRequirementsReport report2 = candidate.checkPartialSolutionPropertiesMet(pspn, atEndGlobalModified, atEndLocalModified);
if (report2 != FeedbackPropertiesMeetRequirementsReport.NOT_MET) {
newCandidates.add(rebuildPropertiesPlanNode);
}
}
planDeleter.remove();
}
}
candidates.addAll(newCandidates);
}
if (candidates.isEmpty()) {
return;
}
// function.
if (terminationCriterion == null) {
for (PlanNode candidate : candidates) {
BulkIterationPlanNode node = new BulkIterationPlanNode(this, this.getOperator().getName(), in, pspn, candidate);
GlobalProperties gProps = candidate.getGlobalProperties().clone();
LocalProperties lProps = candidate.getLocalProperties().clone();
node.initProperties(gProps, lProps);
target.add(node);
}
} else if (candidates.size() > 0) {
List<PlanNode> terminationCriterionCandidates = this.terminationCriterion.getAlternativePlans(estimator);
SingleRootJoiner singleRoot = (SingleRootJoiner) this.singleRoot;
for (PlanNode candidate : candidates) {
for (PlanNode terminationCandidate : terminationCriterionCandidates) {
if (singleRoot.areBranchCompatible(candidate, terminationCandidate)) {
BulkIterationPlanNode node = new BulkIterationPlanNode(this, "BulkIteration (" + this.getOperator().getName() + ")", in, pspn, candidate, terminationCandidate);
GlobalProperties gProps = candidate.getGlobalProperties().clone();
LocalProperties lProps = candidate.getLocalProperties().clone();
node.initProperties(gProps, lProps);
target.add(node);
}
}
}
}
}
use of org.apache.flink.optimizer.dataproperties.LocalProperties in project flink by apache.
the class PropertyDataSourceTest method checkSinglePartitionedOrderedSource5.
@Test
public void checkSinglePartitionedOrderedSource5() {
ExecutionEnvironment env = ExecutionEnvironment.createLocalEnvironment();
env.setParallelism(DEFAULT_PARALLELISM);
DataSource<Tuple3<Long, SomePojo, String>> data = env.fromCollection(tuple3PojoData, tuple3PojoType);
data.getSplitDataProperties().splitsPartitionedBy("f1.intField").splitsOrderedBy("f0; f1.intField", new Order[] { Order.ASCENDING, Order.DESCENDING });
data.output(new DiscardingOutputFormat<Tuple3<Long, SomePojo, String>>());
Plan plan = env.createProgramPlan();
// submit the plan to the compiler
OptimizedPlan oPlan = compileNoStats(plan);
// check the optimized Plan
SinkPlanNode sinkNode = oPlan.getDataSinks().iterator().next();
SourcePlanNode sourceNode = (SourcePlanNode) sinkNode.getPredecessor();
GlobalProperties gprops = sourceNode.getGlobalProperties();
LocalProperties lprops = sourceNode.getLocalProperties();
Assert.assertTrue((new FieldSet(gprops.getPartitioningFields().toArray())).equals(new FieldSet(2)));
Assert.assertTrue(gprops.getPartitioning() == PartitioningProperty.ANY_PARTITIONING);
Assert.assertTrue(new FieldSet(lprops.getGroupedFields().toArray()).equals(new FieldSet(0, 2)));
Assert.assertTrue(lprops.getOrdering() == null);
}
use of org.apache.flink.optimizer.dataproperties.LocalProperties in project flink by apache.
the class PropertyDataSourceTest method checkSinglePartitionedSource3.
@Test
public void checkSinglePartitionedSource3() {
ExecutionEnvironment env = ExecutionEnvironment.createLocalEnvironment();
env.setParallelism(DEFAULT_PARALLELISM);
DataSource<Tuple3<Long, SomePojo, String>> data = env.fromCollection(tuple3PojoData, tuple3PojoType);
data.getSplitDataProperties().splitsPartitionedBy("*");
data.output(new DiscardingOutputFormat<Tuple3<Long, SomePojo, String>>());
Plan plan = env.createProgramPlan();
// submit the plan to the compiler
OptimizedPlan oPlan = compileNoStats(plan);
// check the optimized Plan
SinkPlanNode sinkNode = oPlan.getDataSinks().iterator().next();
SourcePlanNode sourceNode = (SourcePlanNode) sinkNode.getPredecessor();
GlobalProperties gprops = sourceNode.getGlobalProperties();
LocalProperties lprops = sourceNode.getLocalProperties();
Assert.assertTrue((new FieldSet(gprops.getPartitioningFields().toArray())).equals(new FieldSet(0, 1, 2, 3, 4)));
Assert.assertTrue(gprops.getPartitioning() == PartitioningProperty.ANY_PARTITIONING);
Assert.assertTrue(lprops.getGroupedFields() == null);
Assert.assertTrue(lprops.getOrdering() == null);
}
Aggregations