use of org.apache.flink.runtime.io.disk.iomanager.BulkBlockChannelReader in project flink by apache.
the class ReOpenableHashPartition method restorePartitionBuffers.
/**
* This method is called every time a multi-match hash map is opened again for a new probe input.
* @param ioManager
* @param availableMemory
* @throws IOException
*/
void restorePartitionBuffers(IOManager ioManager, List<MemorySegment> availableMemory) throws IOException {
final BulkBlockChannelReader reader = ioManager.createBulkBlockChannelReader(this.initialBuildSideChannel, availableMemory, this.initialPartitionBuffersCount);
reader.close();
final List<MemorySegment> partitionBuffersFromDisk = reader.getFullSegments();
this.partitionBuffers = (MemorySegment[]) partitionBuffersFromDisk.toArray(new MemorySegment[partitionBuffersFromDisk.size()]);
this.overflowSegments = new MemorySegment[2];
this.numOverflowSegments = 0;
this.nextOverflowBucket = 0;
this.isRestored = true;
}
use of org.apache.flink.runtime.io.disk.iomanager.BulkBlockChannelReader in project flink by apache.
the class MutableHashTable method buildTableFromSpilledPartition.
protected void buildTableFromSpilledPartition(final HashPartition<BT, PT> p) throws IOException {
final int nextRecursionLevel = p.getRecursionLevel() + 1;
if (nextRecursionLevel > MAX_RECURSION_DEPTH) {
throw new RuntimeException("Hash join exceeded maximum number of recursions, without reducing " + "partitions enough to be memory resident. Probably cause: Too many duplicate keys.");
}
// we distinguish two cases here:
// 1) The partition fits entirely into main memory. That is the case if we have enough buffers for
// all partition segments, plus enough buffers to hold the table structure.
// --> We read the partition in as it is and create a hashtable that references only
// that single partition.
// 2) We can not guarantee that enough memory segments are available and read the partition
// in, distributing its data among newly created partitions.
final int totalBuffersAvailable = this.availableMemory.size() + this.writeBehindBuffersAvailable;
if (totalBuffersAvailable != this.totalNumBuffers - this.numWriteBehindBuffers) {
throw new RuntimeException("Hash Join bug in memory management: Memory buffers leaked.");
}
long numBuckets = p.getBuildSideRecordCount() / NUM_ENTRIES_PER_BUCKET + 1;
// we need to consider the worst case where everything hashes to one bucket which needs to overflow by the same
// number of total buckets again. Also, one buffer needs to remain for the probing
final long totalBuffersNeeded = 2 * (numBuckets / (this.bucketsPerSegmentMask + 1)) + p.getBuildSideBlockCount() + 2;
if (totalBuffersNeeded < totalBuffersAvailable) {
// we are guaranteed to stay in memory
ensureNumBuffersReturned(p.getBuildSideBlockCount());
// first read the partition in
final BulkBlockChannelReader reader = this.ioManager.createBulkBlockChannelReader(p.getBuildSideChannel().getChannelID(), this.availableMemory, p.getBuildSideBlockCount());
// call waits until all is read
if (keepBuildSidePartitions && p.recursionLevel == 0) {
// keep the partitions
reader.close();
} else {
reader.closeAndDelete();
}
final List<MemorySegment> partitionBuffers = reader.getFullSegments();
final HashPartition<BT, PT> newPart = new HashPartition<BT, PT>(this.buildSideSerializer, this.probeSideSerializer, 0, nextRecursionLevel, partitionBuffers, p.getBuildSideRecordCount(), this.segmentSize, p.getLastSegmentLimit());
this.partitionsBeingBuilt.add(newPart);
// erect the buckets
initTable((int) numBuckets, (byte) 1);
// now, index the partition through a hash table
final HashPartition<BT, PT>.PartitionIterator<BT, PT> pIter = newPart.getPartitionIterator(this.buildSideComparator);
BT record = this.buildSideSerializer.createInstance();
while ((record = pIter.next(record)) != null) {
final int hashCode = hash(pIter.getCurrentHashCode(), nextRecursionLevel);
final int posHashCode = hashCode % this.numBuckets;
final long pointer = pIter.getPointer();
// get the bucket for the given hash code
final int bucketArrayPos = posHashCode >> this.bucketsPerSegmentBits;
final int bucketInSegmentPos = (posHashCode & this.bucketsPerSegmentMask) << NUM_INTRA_BUCKET_BITS;
final MemorySegment bucket = this.buckets[bucketArrayPos];
insertBucketEntry(newPart, bucket, bucketInSegmentPos, hashCode, pointer, false);
}
} else {
// we need to partition and partially spill
final int avgRecordLenPartition = (int) (((long) p.getBuildSideBlockCount()) * this.segmentSize / p.getBuildSideRecordCount());
final int bucketCount = getInitialTableSize(totalBuffersAvailable, this.segmentSize, getPartitioningFanOutNoEstimates(totalBuffersAvailable), avgRecordLenPartition);
// compute in how many splits, we'd need to partition the result
final int splits = (int) (totalBuffersNeeded / totalBuffersAvailable) + 1;
final int partitionFanOut = Math.min(10 * splits, /* being conservative */
MAX_NUM_PARTITIONS);
createPartitions(partitionFanOut, nextRecursionLevel);
// set up the table structure. the write behind buffers are taken away, as are one buffer per partition
initTable(bucketCount, (byte) partitionFanOut);
// go over the complete input and insert every element into the hash table
// first set up the reader with some memory.
final List<MemorySegment> segments = new ArrayList<MemorySegment>(2);
segments.add(getNextBuffer());
segments.add(getNextBuffer());
final BlockChannelReader<MemorySegment> inReader = this.ioManager.createBlockChannelReader(p.getBuildSideChannel().getChannelID());
final ChannelReaderInputView inView = new HeaderlessChannelReaderInputView(inReader, segments, p.getBuildSideBlockCount(), p.getLastSegmentLimit(), false);
final ChannelReaderInputViewIterator<BT> inIter = new ChannelReaderInputViewIterator<BT>(inView, this.availableMemory, this.buildSideSerializer);
final TypeComparator<BT> btComparator = this.buildSideComparator;
BT rec = this.buildSideSerializer.createInstance();
while ((rec = inIter.next(rec)) != null) {
final int hashCode = hash(btComparator.hash(rec), nextRecursionLevel);
insertIntoTable(rec, hashCode);
}
if (keepBuildSidePartitions && p.recursionLevel == 0) {
// keep the partitions
inReader.close();
} else {
inReader.closeAndDelete();
}
// finalize the partitions
for (int i = 0; i < this.partitionsBeingBuilt.size(); i++) {
HashPartition<BT, PT> part = this.partitionsBeingBuilt.get(i);
part.finalizeBuildPhase(this.ioManager, this.currentEnumerator, this.writeBehindBuffers);
}
}
}
Aggregations