use of org.apache.hadoop.hive.serde2.lazy.LazyBinary in project hive by apache.
the class Vectorizer method canSpecializeMapJoin.
private boolean canSpecializeMapJoin(Operator<? extends OperatorDesc> op, MapJoinDesc desc, boolean isTezOrSpark, VectorizationContext vContext, VectorMapJoinInfo vectorMapJoinInfo) throws HiveException {
Preconditions.checkState(op instanceof MapJoinOperator);
// Allocate a VectorReduceSinkDesc initially with implementation type NONE so EXPLAIN
// can report this operator was vectorized, but not native. And, the conditions.
VectorMapJoinDesc vectorDesc = new VectorMapJoinDesc();
desc.setVectorDesc(vectorDesc);
boolean isVectorizationMapJoinNativeEnabled = HiveConf.getBoolVar(hiveConf, HiveConf.ConfVars.HIVE_VECTORIZATION_MAPJOIN_NATIVE_ENABLED);
String engine = HiveConf.getVar(hiveConf, HiveConf.ConfVars.HIVE_EXECUTION_ENGINE);
boolean oneMapJoinCondition = (desc.getConds().length == 1);
boolean hasNullSafes = onExpressionHasNullSafes(desc);
byte posBigTable = (byte) desc.getPosBigTable();
// Since we want to display all the met and not met conditions in EXPLAIN, we determine all
// information first....
List<ExprNodeDesc> keyDesc = desc.getKeys().get(posBigTable);
VectorExpression[] allBigTableKeyExpressions = vContext.getVectorExpressions(keyDesc);
final int allBigTableKeyExpressionsLength = allBigTableKeyExpressions.length;
// Assume.
boolean supportsKeyTypes = true;
HashSet<String> notSupportedKeyTypes = new HashSet<String>();
// Since a key expression can be a calculation and the key will go into a scratch column,
// we need the mapping and type information.
int[] bigTableKeyColumnMap = new int[allBigTableKeyExpressionsLength];
String[] bigTableKeyColumnNames = new String[allBigTableKeyExpressionsLength];
TypeInfo[] bigTableKeyTypeInfos = new TypeInfo[allBigTableKeyExpressionsLength];
ArrayList<VectorExpression> bigTableKeyExpressionsList = new ArrayList<VectorExpression>();
VectorExpression[] bigTableKeyExpressions;
for (int i = 0; i < allBigTableKeyExpressionsLength; i++) {
VectorExpression ve = allBigTableKeyExpressions[i];
if (!IdentityExpression.isColumnOnly(ve)) {
bigTableKeyExpressionsList.add(ve);
}
bigTableKeyColumnMap[i] = ve.getOutputColumn();
ExprNodeDesc exprNode = keyDesc.get(i);
bigTableKeyColumnNames[i] = exprNode.toString();
TypeInfo typeInfo = exprNode.getTypeInfo();
// same check used in HashTableLoader.
if (!MapJoinKey.isSupportedField(typeInfo)) {
supportsKeyTypes = false;
Category category = typeInfo.getCategory();
notSupportedKeyTypes.add((category != Category.PRIMITIVE ? category.toString() : ((PrimitiveTypeInfo) typeInfo).getPrimitiveCategory().toString()));
}
bigTableKeyTypeInfos[i] = typeInfo;
}
if (bigTableKeyExpressionsList.size() == 0) {
bigTableKeyExpressions = null;
} else {
bigTableKeyExpressions = bigTableKeyExpressionsList.toArray(new VectorExpression[0]);
}
List<ExprNodeDesc> bigTableExprs = desc.getExprs().get(posBigTable);
VectorExpression[] allBigTableValueExpressions = vContext.getVectorExpressions(bigTableExprs);
boolean isFastHashTableEnabled = HiveConf.getBoolVar(hiveConf, HiveConf.ConfVars.HIVE_VECTORIZATION_MAPJOIN_NATIVE_FAST_HASHTABLE_ENABLED);
// Especially since LLAP is prone to turn it off in the MapJoinDesc in later
// physical optimizer stages...
boolean isHybridHashJoin = desc.isHybridHashJoin();
/*
* Populate vectorMapJoininfo.
*/
/*
* Similarly, we need a mapping since a value expression can be a calculation and the value
* will go into a scratch column.
*/
int[] bigTableValueColumnMap = new int[allBigTableValueExpressions.length];
String[] bigTableValueColumnNames = new String[allBigTableValueExpressions.length];
TypeInfo[] bigTableValueTypeInfos = new TypeInfo[allBigTableValueExpressions.length];
ArrayList<VectorExpression> bigTableValueExpressionsList = new ArrayList<VectorExpression>();
VectorExpression[] bigTableValueExpressions;
for (int i = 0; i < bigTableValueColumnMap.length; i++) {
VectorExpression ve = allBigTableValueExpressions[i];
if (!IdentityExpression.isColumnOnly(ve)) {
bigTableValueExpressionsList.add(ve);
}
bigTableValueColumnMap[i] = ve.getOutputColumn();
ExprNodeDesc exprNode = bigTableExprs.get(i);
bigTableValueColumnNames[i] = exprNode.toString();
bigTableValueTypeInfos[i] = exprNode.getTypeInfo();
}
if (bigTableValueExpressionsList.size() == 0) {
bigTableValueExpressions = null;
} else {
bigTableValueExpressions = bigTableValueExpressionsList.toArray(new VectorExpression[0]);
}
vectorMapJoinInfo.setBigTableKeyColumnMap(bigTableKeyColumnMap);
vectorMapJoinInfo.setBigTableKeyColumnNames(bigTableKeyColumnNames);
vectorMapJoinInfo.setBigTableKeyTypeInfos(bigTableKeyTypeInfos);
vectorMapJoinInfo.setBigTableKeyExpressions(bigTableKeyExpressions);
vectorMapJoinInfo.setBigTableValueColumnMap(bigTableValueColumnMap);
vectorMapJoinInfo.setBigTableValueColumnNames(bigTableValueColumnNames);
vectorMapJoinInfo.setBigTableValueTypeInfos(bigTableValueTypeInfos);
vectorMapJoinInfo.setBigTableValueExpressions(bigTableValueExpressions);
/*
* Small table information.
*/
VectorColumnOutputMapping bigTableRetainedMapping = new VectorColumnOutputMapping("Big Table Retained Mapping");
VectorColumnOutputMapping bigTableOuterKeyMapping = new VectorColumnOutputMapping("Big Table Outer Key Mapping");
// The order of the fields in the LazyBinary small table value must be used, so
// we use the source ordering flavor for the mapping.
VectorColumnSourceMapping smallTableMapping = new VectorColumnSourceMapping("Small Table Mapping");
Byte[] order = desc.getTagOrder();
Byte posSingleVectorMapJoinSmallTable = (order[0] == posBigTable ? order[1] : order[0]);
boolean isOuterJoin = !desc.getNoOuterJoin();
/*
* Gather up big and small table output result information from the MapJoinDesc.
*/
List<Integer> bigTableRetainList = desc.getRetainList().get(posBigTable);
int bigTableRetainSize = bigTableRetainList.size();
int[] smallTableIndices;
int smallTableIndicesSize;
List<ExprNodeDesc> smallTableExprs = desc.getExprs().get(posSingleVectorMapJoinSmallTable);
if (desc.getValueIndices() != null && desc.getValueIndices().get(posSingleVectorMapJoinSmallTable) != null) {
smallTableIndices = desc.getValueIndices().get(posSingleVectorMapJoinSmallTable);
smallTableIndicesSize = smallTableIndices.length;
} else {
smallTableIndices = null;
smallTableIndicesSize = 0;
}
List<Integer> smallTableRetainList = desc.getRetainList().get(posSingleVectorMapJoinSmallTable);
int smallTableRetainSize = smallTableRetainList.size();
int smallTableResultSize = 0;
if (smallTableIndicesSize > 0) {
smallTableResultSize = smallTableIndicesSize;
} else if (smallTableRetainSize > 0) {
smallTableResultSize = smallTableRetainSize;
}
/*
* Determine the big table retained mapping first so we can optimize out (with
* projection) copying inner join big table keys in the subsequent small table results section.
*/
// We use a mapping object here so we can build the projection in any order and
// get the ordered by 0 to n-1 output columns at the end.
//
// Also, to avoid copying a big table key into the small table result area for inner joins,
// we reference it with the projection so there can be duplicate output columns
// in the projection.
VectorColumnSourceMapping projectionMapping = new VectorColumnSourceMapping("Projection Mapping");
int nextOutputColumn = (order[0] == posBigTable ? 0 : smallTableResultSize);
for (int i = 0; i < bigTableRetainSize; i++) {
// Since bigTableValueExpressions may do a calculation and produce a scratch column, we
// need to map to the right batch column.
int retainColumn = bigTableRetainList.get(i);
int batchColumnIndex = bigTableValueColumnMap[retainColumn];
TypeInfo typeInfo = bigTableValueTypeInfos[i];
// With this map we project the big table batch to make it look like an output batch.
projectionMapping.add(nextOutputColumn, batchColumnIndex, typeInfo);
// Collect columns we copy from the big table batch to the overflow batch.
if (!bigTableRetainedMapping.containsOutputColumn(batchColumnIndex)) {
// Tolerate repeated use of a big table column.
bigTableRetainedMapping.add(batchColumnIndex, batchColumnIndex, typeInfo);
}
nextOutputColumn++;
}
/*
* Now determine the small table results.
*/
boolean smallTableExprVectorizes = true;
int firstSmallTableOutputColumn;
firstSmallTableOutputColumn = (order[0] == posBigTable ? bigTableRetainSize : 0);
int smallTableOutputCount = 0;
nextOutputColumn = firstSmallTableOutputColumn;
// Small table indices has more information (i.e. keys) than retain, so use it if it exists...
String[] bigTableRetainedNames;
if (smallTableIndicesSize > 0) {
smallTableOutputCount = smallTableIndicesSize;
bigTableRetainedNames = new String[smallTableOutputCount];
for (int i = 0; i < smallTableIndicesSize; i++) {
if (smallTableIndices[i] >= 0) {
// Zero and above numbers indicate a big table key is needed for
// small table result "area".
int keyIndex = smallTableIndices[i];
// Since bigTableKeyExpressions may do a calculation and produce a scratch column, we
// need to map the right column.
int batchKeyColumn = bigTableKeyColumnMap[keyIndex];
bigTableRetainedNames[i] = bigTableKeyColumnNames[keyIndex];
TypeInfo typeInfo = bigTableKeyTypeInfos[keyIndex];
if (!isOuterJoin) {
// Optimize inner join keys of small table results.
// Project the big table key into the small table result "area".
projectionMapping.add(nextOutputColumn, batchKeyColumn, typeInfo);
if (!bigTableRetainedMapping.containsOutputColumn(batchKeyColumn)) {
// If necessary, copy the big table key into the overflow batch's small table
// result "area".
bigTableRetainedMapping.add(batchKeyColumn, batchKeyColumn, typeInfo);
}
} else {
// For outer joins, since the small table key can be null when there is no match,
// we must have a physical (scratch) column for those keys. We cannot use the
// projection optimization used by inner joins above.
int scratchColumn = vContext.allocateScratchColumn(typeInfo);
projectionMapping.add(nextOutputColumn, scratchColumn, typeInfo);
bigTableRetainedMapping.add(batchKeyColumn, scratchColumn, typeInfo);
bigTableOuterKeyMapping.add(batchKeyColumn, scratchColumn, typeInfo);
}
} else {
// Negative numbers indicate a column to be (deserialize) read from the small table's
// LazyBinary value row.
int smallTableValueIndex = -smallTableIndices[i] - 1;
ExprNodeDesc smallTableExprNode = smallTableExprs.get(i);
if (!validateExprNodeDesc(smallTableExprNode, "Small Table")) {
clearNotVectorizedReason();
smallTableExprVectorizes = false;
}
bigTableRetainedNames[i] = smallTableExprNode.toString();
TypeInfo typeInfo = smallTableExprNode.getTypeInfo();
// Make a new big table scratch column for the small table value.
int scratchColumn = vContext.allocateScratchColumn(typeInfo);
projectionMapping.add(nextOutputColumn, scratchColumn, typeInfo);
smallTableMapping.add(smallTableValueIndex, scratchColumn, typeInfo);
}
nextOutputColumn++;
}
} else if (smallTableRetainSize > 0) {
smallTableOutputCount = smallTableRetainSize;
bigTableRetainedNames = new String[smallTableOutputCount];
for (int i = 0; i < smallTableRetainSize; i++) {
int smallTableValueIndex = smallTableRetainList.get(i);
ExprNodeDesc smallTableExprNode = smallTableExprs.get(i);
if (!validateExprNodeDesc(smallTableExprNode, "Small Table")) {
clearNotVectorizedReason();
smallTableExprVectorizes = false;
}
bigTableRetainedNames[i] = smallTableExprNode.toString();
// Make a new big table scratch column for the small table value.
TypeInfo typeInfo = smallTableExprNode.getTypeInfo();
int scratchColumn = vContext.allocateScratchColumn(typeInfo);
projectionMapping.add(nextOutputColumn, scratchColumn, typeInfo);
smallTableMapping.add(smallTableValueIndex, scratchColumn, typeInfo);
nextOutputColumn++;
}
} else {
bigTableRetainedNames = new String[0];
}
boolean useOptimizedTable = HiveConf.getBoolVar(hiveConf, HiveConf.ConfVars.HIVEMAPJOINUSEOPTIMIZEDTABLE);
// Remember the condition variables for EXPLAIN regardless of whether we specialize or not.
vectorDesc.setUseOptimizedTable(useOptimizedTable);
vectorDesc.setIsVectorizationMapJoinNativeEnabled(isVectorizationMapJoinNativeEnabled);
vectorDesc.setEngine(engine);
vectorDesc.setOneMapJoinCondition(oneMapJoinCondition);
vectorDesc.setHasNullSafes(hasNullSafes);
vectorDesc.setSmallTableExprVectorizes(smallTableExprVectorizes);
vectorDesc.setIsFastHashTableEnabled(isFastHashTableEnabled);
vectorDesc.setIsHybridHashJoin(isHybridHashJoin);
vectorDesc.setSupportsKeyTypes(supportsKeyTypes);
if (!supportsKeyTypes) {
vectorDesc.setNotSupportedKeyTypes(new ArrayList(notSupportedKeyTypes));
}
// Check common conditions for both Optimized and Fast Hash Tables.
// Assume.
boolean result = true;
if (!useOptimizedTable || !isVectorizationMapJoinNativeEnabled || !isTezOrSpark || !oneMapJoinCondition || hasNullSafes || !smallTableExprVectorizes) {
result = false;
}
if (!isFastHashTableEnabled) {
// Check optimized-only hash table restrictions.
if (!supportsKeyTypes) {
result = false;
}
} else {
if (isHybridHashJoin) {
result = false;
}
}
// Convert dynamic arrays and maps to simple arrays.
bigTableRetainedMapping.finalize();
bigTableOuterKeyMapping.finalize();
smallTableMapping.finalize();
vectorMapJoinInfo.setBigTableRetainedMapping(bigTableRetainedMapping);
vectorMapJoinInfo.setBigTableOuterKeyMapping(bigTableOuterKeyMapping);
vectorMapJoinInfo.setSmallTableMapping(smallTableMapping);
projectionMapping.finalize();
// Verify we added an entry for each output.
assert projectionMapping.isSourceSequenceGood();
vectorMapJoinInfo.setProjectionMapping(projectionMapping);
return result;
}
use of org.apache.hadoop.hive.serde2.lazy.LazyBinary in project hive by apache.
the class TestLazyBinaryFast method testLazyBinaryFastCase.
public void testLazyBinaryFastCase(int caseNum, boolean doNonRandomFill, Random r) throws Throwable {
SerdeRandomRowSource source = new SerdeRandomRowSource();
source.init(r);
int rowCount = 1000;
Object[][] rows = source.randomRows(rowCount);
if (doNonRandomFill) {
MyTestClass.nonRandomRowFill(rows, source.primitiveCategories());
}
StructObjectInspector rowStructObjectInspector = source.rowStructObjectInspector();
PrimitiveTypeInfo[] primitiveTypeInfos = source.primitiveTypeInfos();
int columnCount = primitiveTypeInfos.length;
int writeColumnCount = columnCount;
StructObjectInspector writeRowStructObjectInspector = rowStructObjectInspector;
boolean doWriteFewerColumns = r.nextBoolean();
if (doWriteFewerColumns) {
writeColumnCount = 1 + r.nextInt(columnCount);
if (writeColumnCount == columnCount) {
doWriteFewerColumns = false;
} else {
writeRowStructObjectInspector = source.partialRowStructObjectInspector(writeColumnCount);
}
}
String fieldNames = ObjectInspectorUtils.getFieldNames(rowStructObjectInspector);
String fieldTypes = ObjectInspectorUtils.getFieldTypes(rowStructObjectInspector);
AbstractSerDe serde = TestLazyBinarySerDe.getSerDe(fieldNames, fieldTypes);
AbstractSerDe serde_fewer = null;
if (doWriteFewerColumns) {
String partialFieldNames = ObjectInspectorUtils.getFieldNames(writeRowStructObjectInspector);
String partialFieldTypes = ObjectInspectorUtils.getFieldTypes(writeRowStructObjectInspector);
serde_fewer = TestLazyBinarySerDe.getSerDe(partialFieldNames, partialFieldTypes);
;
}
testLazyBinaryFast(source, rows, serde, rowStructObjectInspector, serde_fewer, writeRowStructObjectInspector, primitiveTypeInfos, /* useIncludeColumns */
false, /* doWriteFewerColumns */
false, r);
testLazyBinaryFast(source, rows, serde, rowStructObjectInspector, serde_fewer, writeRowStructObjectInspector, primitiveTypeInfos, /* useIncludeColumns */
true, /* doWriteFewerColumns */
false, r);
/*
* Can the LazyBinary format really tolerate writing fewer columns?
*/
// if (doWriteFewerColumns) {
// testLazyBinaryFast(
// source, rows,
// serde, rowStructObjectInspector,
// serde_fewer, writeRowStructObjectInspector,
// primitiveTypeInfos,
// /* useIncludeColumns */ false, /* doWriteFewerColumns */ true, r);
// testLazyBinaryFast(
// source, rows,
// serde, rowStructObjectInspector,
// serde_fewer, writeRowStructObjectInspector,
// primitiveTypeInfos,
// /* useIncludeColumns */ true, /* doWriteFewerColumns */ true, r);
// }
}
use of org.apache.hadoop.hive.serde2.lazy.LazyBinary in project hive by apache.
the class TestLazyBinaryFast method testLazyBinaryFast.
private void testLazyBinaryFast(SerdeRandomRowSource source, Object[][] rows, AbstractSerDe serde, StructObjectInspector rowOI, AbstractSerDe serde_fewer, StructObjectInspector writeRowOI, PrimitiveTypeInfo[] primitiveTypeInfos, boolean useIncludeColumns, boolean doWriteFewerColumns, Random r) throws Throwable {
int rowCount = rows.length;
int columnCount = primitiveTypeInfos.length;
boolean[] columnsToInclude = null;
if (useIncludeColumns) {
columnsToInclude = new boolean[columnCount];
for (int i = 0; i < columnCount; i++) {
columnsToInclude[i] = r.nextBoolean();
}
}
int writeColumnCount = columnCount;
PrimitiveTypeInfo[] writePrimitiveTypeInfos = primitiveTypeInfos;
if (doWriteFewerColumns) {
writeColumnCount = writeRowOI.getAllStructFieldRefs().size();
writePrimitiveTypeInfos = Arrays.copyOf(primitiveTypeInfos, writeColumnCount);
}
LazyBinarySerializeWrite lazyBinarySerializeWrite = new LazyBinarySerializeWrite(writeColumnCount);
// Try to serialize
BytesWritable[] serializeWriteBytes = new BytesWritable[rowCount];
for (int i = 0; i < rowCount; i++) {
Object[] row = rows[i];
Output output = new Output();
lazyBinarySerializeWrite.set(output);
for (int index = 0; index < writeColumnCount; index++) {
Writable writable = (Writable) row[index];
VerifyFast.serializeWrite(lazyBinarySerializeWrite, primitiveTypeInfos[index], writable);
}
BytesWritable bytesWritable = new BytesWritable();
bytesWritable.set(output.getData(), 0, output.getLength());
serializeWriteBytes[i] = bytesWritable;
}
// Try to deserialize
for (int i = 0; i < rowCount; i++) {
Object[] row = rows[i];
// Specifying the right type info length tells LazyBinaryDeserializeRead which is the last
// column.
LazyBinaryDeserializeRead lazyBinaryDeserializeRead = new LazyBinaryDeserializeRead(writePrimitiveTypeInfos, /* useExternalBuffer */
false);
BytesWritable bytesWritable = serializeWriteBytes[i];
lazyBinaryDeserializeRead.set(bytesWritable.getBytes(), 0, bytesWritable.getLength());
for (int index = 0; index < columnCount; index++) {
if (useIncludeColumns && !columnsToInclude[index]) {
lazyBinaryDeserializeRead.skipNextField();
} else if (index >= writeColumnCount) {
// Should come back a null.
VerifyFast.verifyDeserializeRead(lazyBinaryDeserializeRead, primitiveTypeInfos[index], null);
} else {
Writable writable = (Writable) row[index];
VerifyFast.verifyDeserializeRead(lazyBinaryDeserializeRead, primitiveTypeInfos[index], writable);
}
}
if (writeColumnCount == columnCount) {
TestCase.assertTrue(lazyBinaryDeserializeRead.isEndOfInputReached());
}
}
// Try to deserialize using SerDe class our Writable row objects created by SerializeWrite.
for (int i = 0; i < rowCount; i++) {
BytesWritable bytesWritable = serializeWriteBytes[i];
LazyBinaryStruct lazyBinaryStruct;
if (doWriteFewerColumns) {
lazyBinaryStruct = (LazyBinaryStruct) serde_fewer.deserialize(bytesWritable);
} else {
lazyBinaryStruct = (LazyBinaryStruct) serde.deserialize(bytesWritable);
}
Object[] row = rows[i];
for (int index = 0; index < writeColumnCount; index++) {
PrimitiveTypeInfo primitiveTypeInfo = primitiveTypeInfos[index];
Writable writable = (Writable) row[index];
Object object = lazyBinaryStruct.getField(index);
if (writable == null || object == null) {
if (writable != null || object != null) {
fail("SerDe deserialized NULL column mismatch");
}
} else {
if (!object.equals(writable)) {
fail("SerDe deserialized value does not match");
}
}
}
}
// One Writable per row.
BytesWritable[] serdeBytes = new BytesWritable[rowCount];
// Serialize using the SerDe, then below deserialize using DeserializeRead.
Object[] serdeRow = new Object[writeColumnCount];
for (int i = 0; i < rowCount; i++) {
Object[] row = rows[i];
// LazyBinary seems to work better with an row object array instead of a Java object...
for (int index = 0; index < writeColumnCount; index++) {
serdeRow[index] = row[index];
}
BytesWritable serialized;
if (doWriteFewerColumns) {
serialized = (BytesWritable) serde_fewer.serialize(serdeRow, writeRowOI);
} else {
serialized = (BytesWritable) serde.serialize(serdeRow, rowOI);
}
BytesWritable bytesWritable = new BytesWritable(Arrays.copyOfRange(serialized.getBytes(), 0, serialized.getLength()));
byte[] bytes1 = bytesWritable.getBytes();
BytesWritable lazySerializedWriteBytes = serializeWriteBytes[i];
byte[] bytes2 = Arrays.copyOfRange(lazySerializedWriteBytes.getBytes(), 0, lazySerializedWriteBytes.getLength());
if (bytes1.length != bytes2.length) {
fail("SerializeWrite length " + bytes2.length + " and " + "SerDe serialization length " + bytes1.length + " do not match (" + Arrays.toString(primitiveTypeInfos) + ")");
}
if (!Arrays.equals(bytes1, bytes2)) {
fail("SerializeWrite and SerDe serialization does not match (" + Arrays.toString(primitiveTypeInfos) + ")");
}
serdeBytes[i] = bytesWritable;
}
// Try to deserialize using DeserializeRead our Writable row objects created by SerDe.
for (int i = 0; i < rowCount; i++) {
Object[] row = rows[i];
// When doWriteFewerColumns, try to read more fields than exist in buffer.
LazyBinaryDeserializeRead lazyBinaryDeserializeRead = new LazyBinaryDeserializeRead(primitiveTypeInfos, /* useExternalBuffer */
false);
BytesWritable bytesWritable = serdeBytes[i];
lazyBinaryDeserializeRead.set(bytesWritable.getBytes(), 0, bytesWritable.getLength());
for (int index = 0; index < columnCount; index++) {
if (useIncludeColumns && !columnsToInclude[index]) {
lazyBinaryDeserializeRead.skipNextField();
} else if (index >= writeColumnCount) {
// Should come back a null.
VerifyFast.verifyDeserializeRead(lazyBinaryDeserializeRead, primitiveTypeInfos[index], null);
} else {
Writable writable = (Writable) row[index];
VerifyFast.verifyDeserializeRead(lazyBinaryDeserializeRead, primitiveTypeInfos[index], writable);
}
}
if (writeColumnCount == columnCount) {
TestCase.assertTrue(lazyBinaryDeserializeRead.isEndOfInputReached());
}
}
}
use of org.apache.hadoop.hive.serde2.lazy.LazyBinary in project hive by apache.
the class GroupByOperator method shouldBeFlushed.
/**
* Based on user-parameters, should the hash table be flushed.
*
* @param newKeys
* keys for the row under consideration
*/
private boolean shouldBeFlushed(KeyWrapper newKeys) {
int numEntries = hashAggregations.size();
long usedMemory;
float rate;
// variable portion of the size every NUMROWSESTIMATESIZE rows.
if ((numEntriesHashTable == 0) || ((numEntries % NUMROWSESTIMATESIZE) == 0)) {
// check how much memory left memory
usedMemory = memoryMXBean.getHeapMemoryUsage().getUsed();
// TODO: there is no easy and reliable way to compute the memory used by the executor threads and on-heap cache.
// Assuming the used memory is equally divided among all executors.
usedMemory = isLlap ? usedMemory / numExecutors : usedMemory;
rate = (float) usedMemory / (float) maxMemory;
if (rate > memoryThreshold) {
return (!isTez || numEntriesHashTable != 0);
}
for (Integer pos : keyPositionsSize) {
Object key = newKeys.getKeyArray()[pos.intValue()];
// Ignore nulls
if (key != null) {
if (key instanceof LazyString) {
totalVariableSize += ((LazyPrimitive<LazyStringObjectInspector, Text>) key).getWritableObject().getLength();
} else if (key instanceof String) {
totalVariableSize += ((String) key).length();
} else if (key instanceof Text) {
totalVariableSize += ((Text) key).getLength();
} else if (key instanceof LazyBinary) {
totalVariableSize += ((LazyPrimitive<LazyBinaryObjectInspector, BytesWritable>) key).getWritableObject().getLength();
} else if (key instanceof BytesWritable) {
totalVariableSize += ((BytesWritable) key).getLength();
} else if (key instanceof ByteArrayRef) {
totalVariableSize += ((ByteArrayRef) key).getData().length;
}
}
}
AggregationBuffer[] aggs = hashAggregations.get(newKeys);
for (int i = 0; i < aggs.length; i++) {
AggregationBuffer agg = aggs[i];
if (estimableAggregationEvaluators[i]) {
totalVariableSize += ((GenericUDAFEvaluator.AbstractAggregationBuffer) agg).estimate();
continue;
}
if (aggrPositions[i] != null) {
totalVariableSize += estimateSize(agg, aggrPositions[i]);
}
}
numEntriesVarSize++;
// Update the number of entries that can fit in the hash table
numEntriesHashTable = (int) (maxHashTblMemory / (fixedRowSize + (totalVariableSize / numEntriesVarSize)));
LOG.trace("Hash Aggr: #hash table = {} #max in hash table = {}", numEntries, numEntriesHashTable);
}
// flush if necessary
return (numEntries >= numEntriesHashTable);
}
use of org.apache.hadoop.hive.serde2.lazy.LazyBinary in project hive by apache.
the class MapJoinTestConfig method createVectorMapJoinDesc.
public static VectorMapJoinDesc createVectorMapJoinDesc(MapJoinTestDescription testDesc) {
VectorMapJoinDesc vectorDesc = new VectorMapJoinDesc();
vectorDesc.setHashTableImplementationType(HashTableImplementationType.FAST);
HashTableKind hashTableKind;
switch(testDesc.vectorMapJoinVariation) {
case INNER:
hashTableKind = HashTableKind.HASH_MAP;
break;
case INNER_BIG_ONLY:
hashTableKind = HashTableKind.HASH_MULTISET;
break;
case LEFT_SEMI:
case LEFT_ANTI:
hashTableKind = HashTableKind.HASH_SET;
break;
case OUTER:
case FULL_OUTER:
hashTableKind = HashTableKind.HASH_MAP;
break;
default:
throw new RuntimeException("unknown operator variation " + testDesc.vectorMapJoinVariation);
}
vectorDesc.setHashTableKind(hashTableKind);
// Assume.
HashTableKeyType hashTableKeyType = HashTableKeyType.MULTI_KEY;
if (testDesc.bigTableKeyTypeInfos.length == 1) {
switch(((PrimitiveTypeInfo) testDesc.bigTableKeyTypeInfos[0]).getPrimitiveCategory()) {
case BOOLEAN:
hashTableKeyType = HashTableKeyType.BOOLEAN;
break;
case BYTE:
hashTableKeyType = HashTableKeyType.BYTE;
break;
case SHORT:
hashTableKeyType = HashTableKeyType.SHORT;
break;
case INT:
hashTableKeyType = HashTableKeyType.INT;
break;
case LONG:
hashTableKeyType = HashTableKeyType.LONG;
break;
case STRING:
hashTableKeyType = HashTableKeyType.STRING;
break;
default:
}
}
vectorDesc.setHashTableKeyType(hashTableKeyType);
vectorDesc.setVectorMapJoinVariation(testDesc.vectorMapJoinVariation);
vectorDesc.setMinMaxEnabled(false);
VectorMapJoinInfo vectorMapJoinInfo = new VectorMapJoinInfo();
vectorMapJoinInfo.setBigTableKeyColumnMap(testDesc.bigTableKeyColumnNums);
vectorMapJoinInfo.setBigTableKeyColumnNames(testDesc.bigTableKeyColumnNames);
vectorMapJoinInfo.setBigTableKeyTypeInfos(testDesc.bigTableKeyTypeInfos);
vectorMapJoinInfo.setSlimmedBigTableKeyExpressions(null);
vectorDesc.setAllBigTableKeyExpressions(null);
vectorMapJoinInfo.setBigTableValueColumnMap(testDesc.bigTableColumnNums);
vectorMapJoinInfo.setBigTableValueColumnNames(testDesc.bigTableColumnNames);
vectorMapJoinInfo.setBigTableValueTypeInfos(testDesc.bigTableTypeInfos);
vectorMapJoinInfo.setSlimmedBigTableValueExpressions(null);
vectorDesc.setAllBigTableValueExpressions(null);
vectorMapJoinInfo.setBigTableFilterExpressions(new VectorExpression[0]);
/*
* Column mapping.
*/
VectorColumnOutputMapping bigTableRetainMapping = new VectorColumnOutputMapping("Big Table Retain Mapping");
VectorColumnOutputMapping nonOuterSmallTableKeyMapping = new VectorColumnOutputMapping("Non Outer Small Table Key Key Mapping");
VectorColumnOutputMapping outerSmallTableKeyMapping = new VectorColumnOutputMapping("Outer Small Table Key Mapping");
VectorColumnSourceMapping fullOuterSmallTableKeyMapping = new VectorColumnSourceMapping("Full Outer Small Table Key Mapping");
VectorColumnSourceMapping projectionMapping = new VectorColumnSourceMapping("Projection Mapping");
int nextOutputColumn = 0;
final int bigTableRetainedSize = testDesc.bigTableRetainColumnNums.length;
for (int i = 0; i < bigTableRetainedSize; i++) {
final int batchColumnIndex = testDesc.bigTableRetainColumnNums[i];
TypeInfo typeInfo = testDesc.bigTableTypeInfos[i];
projectionMapping.add(nextOutputColumn, batchColumnIndex, typeInfo);
// Collect columns we copy from the big table batch to the overflow batch.
if (!bigTableRetainMapping.containsOutputColumn(batchColumnIndex)) {
// Tolerate repeated use of a big table column.
bigTableRetainMapping.add(batchColumnIndex, batchColumnIndex, typeInfo);
}
nextOutputColumn++;
}
boolean isOuterJoin = (testDesc.vectorMapJoinVariation == VectorMapJoinVariation.OUTER || testDesc.vectorMapJoinVariation == VectorMapJoinVariation.FULL_OUTER);
int emulateScratchColumn = testDesc.bigTableTypeInfos.length;
VectorColumnOutputMapping smallTableKeyOutputMapping = new VectorColumnOutputMapping("Small Table Key Output Mapping");
final int smallTableKeyRetainSize = testDesc.smallTableRetainKeyColumnNums.length;
for (int i = 0; i < testDesc.smallTableRetainKeyColumnNums.length; i++) {
final int smallTableKeyColumnNum = testDesc.smallTableRetainKeyColumnNums[i];
final int bigTableKeyColumnNum = testDesc.bigTableKeyColumnNums[smallTableKeyColumnNum];
TypeInfo keyTypeInfo = testDesc.smallTableKeyTypeInfos[smallTableKeyColumnNum];
if (!isOuterJoin) {
// Project the big table key into the small table result "area".
projectionMapping.add(nextOutputColumn, bigTableKeyColumnNum, keyTypeInfo);
if (!bigTableRetainMapping.containsOutputColumn(bigTableKeyColumnNum)) {
nonOuterSmallTableKeyMapping.add(bigTableKeyColumnNum, bigTableKeyColumnNum, keyTypeInfo);
}
} else {
outerSmallTableKeyMapping.add(bigTableKeyColumnNum, emulateScratchColumn, keyTypeInfo);
projectionMapping.add(nextOutputColumn, emulateScratchColumn, keyTypeInfo);
// For FULL OUTER MapJoin, we need to be able to deserialize a Small Table key
// into the output result.
fullOuterSmallTableKeyMapping.add(smallTableKeyColumnNum, emulateScratchColumn, keyTypeInfo);
emulateScratchColumn++;
}
nextOutputColumn++;
}
// The order of the fields in the LazyBinary small table value must be used, so
// we use the source ordering flavor for the mapping.
VectorColumnSourceMapping smallTableValueMapping = new VectorColumnSourceMapping("Small Table Value Mapping");
for (int i = 0; i < testDesc.smallTableValueTypeInfos.length; i++) {
smallTableValueMapping.add(i, emulateScratchColumn, testDesc.smallTableValueTypeInfos[i]);
projectionMapping.add(nextOutputColumn, emulateScratchColumn, testDesc.smallTableValueTypeInfos[i]);
emulateScratchColumn++;
nextOutputColumn++;
}
// Convert dynamic arrays and maps to simple arrays.
bigTableRetainMapping.finalize();
vectorMapJoinInfo.setBigTableRetainColumnMap(bigTableRetainMapping.getOutputColumns());
vectorMapJoinInfo.setBigTableRetainTypeInfos(bigTableRetainMapping.getTypeInfos());
nonOuterSmallTableKeyMapping.finalize();
vectorMapJoinInfo.setNonOuterSmallTableKeyColumnMap(nonOuterSmallTableKeyMapping.getOutputColumns());
vectorMapJoinInfo.setNonOuterSmallTableKeyTypeInfos(nonOuterSmallTableKeyMapping.getTypeInfos());
outerSmallTableKeyMapping.finalize();
fullOuterSmallTableKeyMapping.finalize();
vectorMapJoinInfo.setOuterSmallTableKeyMapping(outerSmallTableKeyMapping);
vectorMapJoinInfo.setFullOuterSmallTableKeyMapping(fullOuterSmallTableKeyMapping);
smallTableValueMapping.finalize();
vectorMapJoinInfo.setSmallTableValueMapping(smallTableValueMapping);
projectionMapping.finalize();
// Verify we added an entry for each output.
assert projectionMapping.isSourceSequenceGood();
vectorMapJoinInfo.setProjectionMapping(projectionMapping);
if (projectionMapping.getCount() != testDesc.outputColumnNames.length) {
throw new RuntimeException();
}
;
vectorDesc.setVectorMapJoinInfo(vectorMapJoinInfo);
return vectorDesc;
}
Aggregations