use of org.apache.hyracks.api.dataflow.value.ITypeTraits in project asterixdb by apache.
the class AbstractRTreeExamplesTest method threeDimensionsExample.
/**
* Two Dimensions Example. Create an RTree index of three dimensions, where
* they keys are of type double, and the payload is one double value. Fill
* index with random values using insertions (not bulk load). Perform scans
* and range search.
*/
@Test
public void threeDimensionsExample() throws Exception {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.info("Fixed-Length Key,Value Example.");
}
// Declare fields.
int fieldCount = 7;
ITypeTraits[] typeTraits = new ITypeTraits[fieldCount];
typeTraits[0] = DoublePointable.TYPE_TRAITS;
typeTraits[1] = DoublePointable.TYPE_TRAITS;
typeTraits[2] = DoublePointable.TYPE_TRAITS;
typeTraits[3] = DoublePointable.TYPE_TRAITS;
typeTraits[4] = DoublePointable.TYPE_TRAITS;
typeTraits[5] = DoublePointable.TYPE_TRAITS;
typeTraits[6] = DoublePointable.TYPE_TRAITS;
// Declare field serdes.
ISerializerDeserializer[] fieldSerdes = { DoubleSerializerDeserializer.INSTANCE, DoubleSerializerDeserializer.INSTANCE, DoubleSerializerDeserializer.INSTANCE, DoubleSerializerDeserializer.INSTANCE, DoubleSerializerDeserializer.INSTANCE, DoubleSerializerDeserializer.INSTANCE, DoubleSerializerDeserializer.INSTANCE };
// Declare RTree keys.
int rtreeKeyFieldCount = 6;
IBinaryComparatorFactory[] rtreeCmpFactories = new IBinaryComparatorFactory[rtreeKeyFieldCount];
rtreeCmpFactories[0] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
rtreeCmpFactories[1] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
rtreeCmpFactories[2] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
rtreeCmpFactories[3] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
rtreeCmpFactories[4] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
rtreeCmpFactories[5] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
// Declare BTree keys, this will only be used for LSMRTree
int btreeKeyFieldCount;
IBinaryComparatorFactory[] btreeCmpFactories;
int[] btreeFields = null;
if (rTreeType == RTreeType.LSMRTREE) {
//Parameters look different for LSM RTREE from LSM RTREE WITH ANTI MATTER TUPLES
btreeKeyFieldCount = 1;
btreeCmpFactories = new IBinaryComparatorFactory[btreeKeyFieldCount];
btreeCmpFactories[0] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
btreeFields = new int[btreeKeyFieldCount];
for (int i = 0; i < btreeKeyFieldCount; i++) {
btreeFields[i] = rtreeKeyFieldCount + i;
}
} else {
btreeKeyFieldCount = 7;
btreeCmpFactories = new IBinaryComparatorFactory[btreeKeyFieldCount];
btreeCmpFactories[0] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
btreeCmpFactories[1] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
btreeCmpFactories[2] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
btreeCmpFactories[3] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
btreeCmpFactories[4] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
btreeCmpFactories[5] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
btreeCmpFactories[6] = PointableBinaryComparatorFactory.of(DoublePointable.FACTORY);
}
// create value providers
IPrimitiveValueProviderFactory[] valueProviderFactories = RTreeUtils.createPrimitiveValueProviderFactories(rtreeCmpFactories.length, DoublePointable.FACTORY);
//4
ITreeIndex treeIndex = createTreeIndex(typeTraits, rtreeCmpFactories, btreeCmpFactories, valueProviderFactories, RTreePolicyType.RTREE, null, btreeFields, null, null, null);
treeIndex.create();
treeIndex.activate();
long start = System.currentTimeMillis();
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.info("Inserting into tree...");
}
ArrayTupleBuilder tb = new ArrayTupleBuilder(fieldCount);
ArrayTupleReference tuple = new ArrayTupleReference();
IIndexAccessor indexAccessor = treeIndex.createAccessor(NoOpOperationCallback.INSTANCE, NoOpOperationCallback.INSTANCE);
int numInserts = 10000;
for (int i = 0; i < numInserts; i++) {
double p1x = rnd.nextDouble();
double p1y = rnd.nextDouble();
double p1z = rnd.nextDouble();
double p2x = rnd.nextDouble();
double p2y = rnd.nextDouble();
double p2z = rnd.nextDouble();
double pk = 5.0;
TupleUtils.createDoubleTuple(tb, tuple, Math.min(p1x, p2x), Math.min(p1y, p2y), Math.min(p1z, p2z), Math.max(p1x, p2x), Math.max(p1y, p2y), Math.max(p1z, p2z), pk);
try {
indexAccessor.insert(tuple);
} catch (HyracksDataException e) {
if (e.getErrorCode() != ErrorCode.DUPLICATE_KEY) {
throw e;
}
}
}
long end = System.currentTimeMillis();
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.info(numInserts + " inserts in " + (end - start) + "ms");
}
scan(indexAccessor, fieldSerdes);
diskOrderScan(indexAccessor, fieldSerdes);
// Build key.
ArrayTupleBuilder keyTb = new ArrayTupleBuilder(rtreeKeyFieldCount);
ArrayTupleReference key = new ArrayTupleReference();
TupleUtils.createDoubleTuple(keyTb, key, -1000.0, -1000.0, -1000.0, 1000.0, 1000.0, 1000.0);
rangeSearch(rtreeCmpFactories, indexAccessor, fieldSerdes, key, null, null);
treeIndex.deactivate();
treeIndex.destroy();
}
use of org.apache.hyracks.api.dataflow.value.ITypeTraits in project asterixdb by apache.
the class AbstractRTreeExamplesTest method rTreePageSplitTestExample.
/**
* This test the rtree page split. Originally this test didn't pass since
* the rtree assumes always that there will be enough space for the new
* tuple after split. Now it passes since if there is not space in the
* designated page, then we will just insert it in the other split page.
*/
@Test
public void rTreePageSplitTestExample() throws Exception {
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.info("RTree page split test.");
}
// Declare fields.
int fieldCount = 5;
ITypeTraits[] typeTraits = new ITypeTraits[fieldCount];
typeTraits[0] = IntegerPointable.TYPE_TRAITS;
typeTraits[1] = IntegerPointable.TYPE_TRAITS;
typeTraits[2] = IntegerPointable.TYPE_TRAITS;
typeTraits[3] = IntegerPointable.TYPE_TRAITS;
typeTraits[4] = UTF8StringPointable.TYPE_TRAITS;
// Declare field serdes.
ISerializerDeserializer[] fieldSerdes = { IntegerSerializerDeserializer.INSTANCE, IntegerSerializerDeserializer.INSTANCE, IntegerSerializerDeserializer.INSTANCE, IntegerSerializerDeserializer.INSTANCE, new UTF8StringSerializerDeserializer() };
// Declare RTree keys.
int rtreeKeyFieldCount = 4;
IBinaryComparatorFactory[] rtreeCmpFactories = new IBinaryComparatorFactory[rtreeKeyFieldCount];
rtreeCmpFactories[0] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
rtreeCmpFactories[1] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
rtreeCmpFactories[2] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
rtreeCmpFactories[3] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
// Declare BTree keys, this will only be used for LSMRTree
int btreeKeyFieldCount;
IBinaryComparatorFactory[] btreeCmpFactories;
int[] btreeFields = null;
if (rTreeType == RTreeType.LSMRTREE) {
//Parameters look different for LSM RTREE from LSM RTREE WITH ANTI MATTER TUPLES
btreeKeyFieldCount = 1;
btreeCmpFactories = new IBinaryComparatorFactory[btreeKeyFieldCount];
btreeCmpFactories[0] = PointableBinaryComparatorFactory.of(UTF8StringPointable.FACTORY);
btreeFields = new int[btreeKeyFieldCount];
for (int i = 0; i < btreeKeyFieldCount; i++) {
btreeFields[i] = rtreeKeyFieldCount + i;
}
} else {
btreeKeyFieldCount = 5;
btreeCmpFactories = new IBinaryComparatorFactory[btreeKeyFieldCount];
btreeCmpFactories[0] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
btreeCmpFactories[1] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
btreeCmpFactories[2] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
btreeCmpFactories[3] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY);
btreeCmpFactories[4] = PointableBinaryComparatorFactory.of(UTF8StringPointable.FACTORY);
}
// create value providers
IPrimitiveValueProviderFactory[] valueProviderFactories = RTreeUtils.createPrimitiveValueProviderFactories(rtreeCmpFactories.length, IntegerPointable.FACTORY);
//2
ITreeIndex treeIndex = createTreeIndex(typeTraits, rtreeCmpFactories, btreeCmpFactories, valueProviderFactories, RTreePolicyType.RTREE, null, btreeFields, null, null, null);
treeIndex.create();
treeIndex.activate();
ArrayTupleBuilder tb = new ArrayTupleBuilder(fieldCount);
ArrayTupleReference tuple = new ArrayTupleReference();
IIndexAccessor indexAccessor = treeIndex.createAccessor(TestOperationCallback.INSTANCE, TestOperationCallback.INSTANCE);
int p1x = rnd.nextInt();
int p1y = rnd.nextInt();
int p2x = rnd.nextInt();
int p2y = rnd.nextInt();
String data = "";
for (int i = 0; i < 210; i++) {
data += "X";
}
TupleUtils.createTuple(tb, tuple, fieldSerdes, Math.min(p1x, p2x), Math.min(p1y, p2y), Math.max(p1x, p2x), Math.max(p1y, p2y), data);
indexAccessor.insert(tuple);
p1x = rnd.nextInt();
p1y = rnd.nextInt();
p2x = rnd.nextInt();
p2y = rnd.nextInt();
data = "XXX";
TupleUtils.createTuple(tb, tuple, fieldSerdes, Math.min(p1x, p2x), Math.min(p1y, p2y), Math.max(p1x, p2x), Math.max(p1y, p2y), data);
indexAccessor.insert(tuple);
p1x = rnd.nextInt();
p1y = rnd.nextInt();
p2x = rnd.nextInt();
p2y = rnd.nextInt();
data = "XXX";
TupleUtils.createTuple(tb, tuple, fieldSerdes, Math.min(p1x, p2x), Math.min(p1y, p2y), Math.max(p1x, p2x), Math.max(p1y, p2y), data);
indexAccessor.insert(tuple);
p1x = rnd.nextInt();
p1y = rnd.nextInt();
p2x = rnd.nextInt();
p2y = rnd.nextInt();
data = "XXX";
TupleUtils.createTuple(tb, tuple, fieldSerdes, Math.min(p1x, p2x), Math.min(p1y, p2y), Math.max(p1x, p2x), Math.max(p1y, p2y), data);
indexAccessor.insert(tuple);
p1x = rnd.nextInt();
p1y = rnd.nextInt();
p2x = rnd.nextInt();
p2y = rnd.nextInt();
data = "";
for (int i = 0; i < 210; i++) {
data += "X";
}
TupleUtils.createTuple(tb, tuple, fieldSerdes, Math.min(p1x, p2x), Math.min(p1y, p2y), Math.max(p1x, p2x), Math.max(p1y, p2y), data);
indexAccessor.insert(tuple);
p1x = rnd.nextInt();
p1y = rnd.nextInt();
p2x = rnd.nextInt();
p2y = rnd.nextInt();
data = "";
for (int i = 0; i < 210; i++) {
data += "X";
}
TupleUtils.createTuple(tb, tuple, fieldSerdes, Math.min(p1x, p2x), Math.min(p1y, p2y), Math.max(p1x, p2x), Math.max(p1y, p2y), data);
indexAccessor.insert(tuple);
treeIndex.deactivate();
treeIndex.destroy();
}
use of org.apache.hyracks.api.dataflow.value.ITypeTraits in project asterixdb by apache.
the class OrderedIndexMultiThreadTest method runTest.
protected void runTest(ISerializerDeserializer[] fieldSerdes, int numKeys, int numThreads, TestWorkloadConf conf, String dataMsg) throws InterruptedException, HyracksDataException {
setUp();
if (LOGGER.isLoggable(Level.INFO)) {
String indexTypeName = getIndexTypeName();
LOGGER.info(indexTypeName + " MultiThread Test:\nData: " + dataMsg + "; Threads: " + numThreads + "; Workload: " + conf.toString() + ".");
}
ITypeTraits[] typeTraits = SerdeUtils.serdesToTypeTraits(fieldSerdes);
IBinaryComparatorFactory[] cmpFactories = SerdeUtils.serdesToComparatorFactories(fieldSerdes, numKeys);
// This is only used for the LSM-BTree.
int[] bloomFilterKeyFields = new int[numKeys];
for (int i = 0; i < numKeys; ++i) {
bloomFilterKeyFields[i] = i;
}
IIndex index = createIndex(typeTraits, cmpFactories, bloomFilterKeyFields);
IIndexTestWorkerFactory workerFactory = getWorkerFactory();
// 4 batches per thread.
int batchSize = (NUM_OPERATIONS / numThreads) / 4;
IndexMultiThreadTestDriver driver = new IndexMultiThreadTestDriver(index, workerFactory, fieldSerdes, conf.ops, conf.opProbs);
driver.init();
long[] times = driver.run(numThreads, 1, NUM_OPERATIONS, batchSize);
index.validate();
driver.deinit();
if (LOGGER.isLoggable(Level.INFO)) {
LOGGER.info("BTree MultiThread Test Time: " + times[0] + "ms");
}
tearDown();
}
use of org.apache.hyracks.api.dataflow.value.ITypeTraits in project asterixdb by apache.
the class MetadataProvider method getBinaryTokenizerRuntime.
// Get a Tokenizer for the bulk-loading data into a n-gram or keyword index.
private Pair<IOperatorDescriptor, AlgebricksPartitionConstraint> getBinaryTokenizerRuntime(String dataverseName, String datasetName, String indexName, IOperatorSchema inputSchema, IOperatorSchema propagatedSchema, List<LogicalVariable> primaryKeys, List<LogicalVariable> secondaryKeys, RecordDescriptor recordDesc, JobSpecification spec, IndexType indexType) throws AlgebricksException {
// Sanity checks.
if (primaryKeys.size() > 1) {
throw new AlgebricksException("Cannot tokenize composite primary key.");
}
if (secondaryKeys.size() > 1) {
throw new AlgebricksException("Cannot tokenize composite secondary key fields.");
}
boolean isPartitioned;
if (indexType == IndexType.LENGTH_PARTITIONED_WORD_INVIX || indexType == IndexType.LENGTH_PARTITIONED_NGRAM_INVIX) {
isPartitioned = true;
} else {
isPartitioned = false;
}
// Number of Keys that needs to be propagated
int numKeys = inputSchema.getSize();
// Get the rest of Logical Variables that are not (PK or SK) and each
// variable's positions.
// These variables will be propagated through TokenizeOperator.
List<LogicalVariable> otherKeys = new ArrayList<>();
if (inputSchema.getSize() > 0) {
for (int k = 0; k < inputSchema.getSize(); k++) {
boolean found = false;
for (LogicalVariable varKey : primaryKeys) {
if (varKey.equals(inputSchema.getVariable(k))) {
found = true;
break;
} else {
found = false;
}
}
if (!found) {
for (LogicalVariable varKey : secondaryKeys) {
if (varKey.equals(inputSchema.getVariable(k))) {
found = true;
break;
} else {
found = false;
}
}
}
if (!found) {
otherKeys.add(inputSchema.getVariable(k));
}
}
}
// For tokenization, sorting and loading.
// One token (+ optional partitioning field) + primary keys + secondary
// keys + other variables
// secondary keys and other variables will be just passed to the
// IndexInsertDelete Operator.
int numTokenKeyPairFields = (!isPartitioned) ? 1 + numKeys : 2 + numKeys;
// generate field permutations for the input
int[] fieldPermutation = new int[numKeys];
int[] modificationCallbackPrimaryKeyFields = new int[primaryKeys.size()];
int i = 0;
int j = 0;
for (LogicalVariable varKey : primaryKeys) {
int idx = propagatedSchema.findVariable(varKey);
fieldPermutation[i] = idx;
modificationCallbackPrimaryKeyFields[j] = i;
i++;
j++;
}
for (LogicalVariable varKey : otherKeys) {
int idx = propagatedSchema.findVariable(varKey);
fieldPermutation[i] = idx;
i++;
}
for (LogicalVariable varKey : secondaryKeys) {
int idx = propagatedSchema.findVariable(varKey);
fieldPermutation[i] = idx;
i++;
}
Dataset dataset = MetadataManagerUtil.findExistingDataset(mdTxnCtx, dataverseName, datasetName);
String itemTypeName = dataset.getItemTypeName();
IAType itemType;
try {
itemType = MetadataManager.INSTANCE.getDatatype(mdTxnCtx, dataset.getItemTypeDataverseName(), itemTypeName).getDatatype();
if (itemType.getTypeTag() != ATypeTag.OBJECT) {
throw new AlgebricksException("Only record types can be tokenized.");
}
ARecordType recType = (ARecordType) itemType;
// Index parameters.
Index secondaryIndex = MetadataManager.INSTANCE.getIndex(mdTxnCtx, dataset.getDataverseName(), dataset.getDatasetName(), indexName);
List<List<String>> secondaryKeyExprs = secondaryIndex.getKeyFieldNames();
List<IAType> secondaryKeyTypeEntries = secondaryIndex.getKeyFieldTypes();
int numTokenFields = (!isPartitioned) ? secondaryKeys.size() : secondaryKeys.size() + 1;
ITypeTraits[] tokenTypeTraits = new ITypeTraits[numTokenFields];
ITypeTraits[] invListsTypeTraits = new ITypeTraits[primaryKeys.size()];
// Find the key type of the secondary key. If it's a derived type,
// return the derived type.
// e.g. UNORDERED LIST -> return UNORDERED LIST type
IAType secondaryKeyType;
Pair<IAType, Boolean> keyPairType = Index.getNonNullableOpenFieldType(secondaryKeyTypeEntries.get(0), secondaryKeyExprs.get(0), recType);
secondaryKeyType = keyPairType.first;
List<List<String>> partitioningKeys = dataset.getPrimaryKeys();
i = 0;
for (List<String> partitioningKey : partitioningKeys) {
IAType keyType = recType.getSubFieldType(partitioningKey);
invListsTypeTraits[i] = TypeTraitProvider.INSTANCE.getTypeTrait(keyType);
++i;
}
tokenTypeTraits[0] = NonTaggedFormatUtil.getTokenTypeTrait(secondaryKeyType);
if (isPartitioned) {
// The partitioning field is hardcoded to be a short *without*
// an Asterix type tag.
tokenTypeTraits[1] = ShortPointable.TYPE_TRAITS;
}
IBinaryTokenizerFactory tokenizerFactory = NonTaggedFormatUtil.getBinaryTokenizerFactory(secondaryKeyType.getTypeTag(), indexType, secondaryIndex.getGramLength());
Pair<IFileSplitProvider, AlgebricksPartitionConstraint> splitsAndConstraint = getSplitProviderAndConstraints(dataset, secondaryIndex.getIndexName());
// Generate Output Record format
ISerializerDeserializer<?>[] tokenKeyPairFields = new ISerializerDeserializer[numTokenKeyPairFields];
ITypeTraits[] tokenKeyPairTypeTraits = new ITypeTraits[numTokenKeyPairFields];
ISerializerDeserializerProvider serdeProvider = FormatUtils.getDefaultFormat().getSerdeProvider();
// #1. propagate all input variables
for (int k = 0; k < recordDesc.getFieldCount(); k++) {
tokenKeyPairFields[k] = recordDesc.getFields()[k];
tokenKeyPairTypeTraits[k] = recordDesc.getTypeTraits()[k];
}
int tokenOffset = recordDesc.getFieldCount();
// #2. Specify the token type
tokenKeyPairFields[tokenOffset] = serdeProvider.getSerializerDeserializer(secondaryKeyType);
tokenKeyPairTypeTraits[tokenOffset] = tokenTypeTraits[0];
tokenOffset++;
// #3. Specify the length-partitioning key: number of token
if (isPartitioned) {
tokenKeyPairFields[tokenOffset] = ShortSerializerDeserializer.INSTANCE;
tokenKeyPairTypeTraits[tokenOffset] = tokenTypeTraits[1];
}
RecordDescriptor tokenKeyPairRecDesc = new RecordDescriptor(tokenKeyPairFields, tokenKeyPairTypeTraits);
IOperatorDescriptor tokenizerOp;
// Keys to be tokenized : SK
int docField = fieldPermutation[fieldPermutation.length - 1];
// Keys to be propagated
int[] keyFields = new int[numKeys];
for (int k = 0; k < keyFields.length; k++) {
keyFields[k] = k;
}
tokenizerOp = new BinaryTokenizerOperatorDescriptor(spec, tokenKeyPairRecDesc, tokenizerFactory, docField, keyFields, isPartitioned, true);
return new Pair<>(tokenizerOp, splitsAndConstraint.second);
} catch (Exception e) {
throw new AlgebricksException(e);
}
}
use of org.apache.hyracks.api.dataflow.value.ITypeTraits in project asterixdb by apache.
the class MetadataProvider method getComparatorFactoriesAndTypeTraitsOfSecondaryBTreeIndex.
private Pair<IBinaryComparatorFactory[], ITypeTraits[]> getComparatorFactoriesAndTypeTraitsOfSecondaryBTreeIndex(List<List<String>> sidxKeyFieldNames, List<IAType> sidxKeyFieldTypes, List<List<String>> pidxKeyFieldNames, ARecordType recType, DatasetType dsType, boolean hasMeta, List<Integer> primaryIndexKeyIndicators, List<Integer> secondaryIndexIndicators, ARecordType metaType) throws AlgebricksException {
IBinaryComparatorFactory[] comparatorFactories;
ITypeTraits[] typeTraits;
int sidxKeyFieldCount = sidxKeyFieldNames.size();
int pidxKeyFieldCount = pidxKeyFieldNames.size();
typeTraits = new ITypeTraits[sidxKeyFieldCount + pidxKeyFieldCount];
comparatorFactories = new IBinaryComparatorFactory[sidxKeyFieldCount + pidxKeyFieldCount];
int i = 0;
for (; i < sidxKeyFieldCount; ++i) {
Pair<IAType, Boolean> keyPairType = Index.getNonNullableOpenFieldType(sidxKeyFieldTypes.get(i), sidxKeyFieldNames.get(i), (hasMeta && secondaryIndexIndicators.get(i).intValue() == 1) ? metaType : recType);
IAType keyType = keyPairType.first;
comparatorFactories[i] = BinaryComparatorFactoryProvider.INSTANCE.getBinaryComparatorFactory(keyType, true);
typeTraits[i] = TypeTraitProvider.INSTANCE.getTypeTrait(keyType);
}
for (int j = 0; j < pidxKeyFieldCount; ++j, ++i) {
IAType keyType = null;
try {
switch(dsType) {
case INTERNAL:
keyType = (hasMeta && primaryIndexKeyIndicators.get(j).intValue() == 1) ? metaType.getSubFieldType(pidxKeyFieldNames.get(j)) : recType.getSubFieldType(pidxKeyFieldNames.get(j));
break;
case EXTERNAL:
keyType = IndexingConstants.getFieldType(j);
break;
default:
throw new AlgebricksException("Unknown Dataset Type");
}
} catch (AsterixException e) {
throw new AlgebricksException(e);
}
comparatorFactories[i] = BinaryComparatorFactoryProvider.INSTANCE.getBinaryComparatorFactory(keyType, true);
typeTraits[i] = TypeTraitProvider.INSTANCE.getTypeTrait(keyType);
}
return new Pair<>(comparatorFactories, typeTraits);
}
Aggregations